1932

Abstract

Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress–induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100308
2016-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100308.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100308&mimeType=html&fmt=ahah

Literature Cited

  1. Agius F, Kapoor A, Zhu JK. 1.  2006. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. PNAS 103:11796–801 [Google Scholar]
  2. Agorio A, Vera P. 2.  2007. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19:3778–90 [Google Scholar]
  3. Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. 3.  2011. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLOS Genet. 7:e1001312 [Google Scholar]
  4. Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM. 4.  et al. 2007. Epigenetic inheritance in rice plants. Ann. Bot. 100:205–17 [Google Scholar]
  5. Baubec T, Finke A, Mittelsten Scheid O, Pecinka A. 5.  2014. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 15:446–52 [Google Scholar]
  6. Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ. 6.  et al. 2013. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. PNAS 110:E435–44 [Google Scholar]
  7. Bennetzen JL, Wang H. 7.  2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505–30 [Google Scholar]
  8. Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O. 8.  et al. 2014. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLOS Pathog. 10:e1003883 [Google Scholar]
  9. Boller T, Felix G. 9.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  10. Bond DM, Baulcombe DC. 10.  2015. Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. PNAS 112:917–22A VIGS system allows the characterization of different RdDM phases during establishment of promoter methylation. [Google Scholar]
  11. Borges F, Martienssen RA. 11.  2015. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16:727–41 [Google Scholar]
  12. Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I. 12.  2007. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res. 35:1714–25 [Google Scholar]
  13. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM. 13.  2009. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J. Virol. 83:5005–13 [Google Scholar]
  14. Caarls L, Pieterse CM, Van Wees SC. 14.  2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6:170 [Google Scholar]
  15. Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE. 15.  et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205 [Google Scholar]
  16. Castillo-Gonzalez C, Liu X, Huang C, Zhao C, Ma Z. 16.  et al. 2015. Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. eLife 4:e06671 [Google Scholar]
  17. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. 17.  2014. How a retrotransposon exploits the plant's heat stress response for its activation. PLOS Genet. 10:e1004115 [Google Scholar]
  18. Chan SW, Zhang X, Bernatavichute YV, Jacobsen SE. 18.  2006. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLOS Biol. 4:e363 [Google Scholar]
  19. Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC. 19.  2013. Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol. Plant-Microbe Interact. 26:537–45 [Google Scholar]
  20. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ. 20.  et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42 [Google Scholar]
  21. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B. 21.  et al. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–19 [Google Scholar]
  22. Coustham V, Vlad D, Deremetz A, Gy I, Cubillos FA. 22.  et al. 2014. SHOOT GROWTH1 maintains Arabidopsis epigenomes by regulating IBM1. PLOS ONE 9:e84687 [Google Scholar]
  23. de Almeida Engler J, Gheysen G. 23.  2013. Nematode-induced endoreduplication in plant host cells: why and how?. Mol. Plant-Microbe Interact. 26:17–24 [Google Scholar]
  24. Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G. 24.  et al. 2012. Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLOS Genet. 8:e1003062 [Google Scholar]
  25. Deslandes L, Rivas S. 25.  2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644–55 [Google Scholar]
  26. Di Giammartino DC, Nishida K, Manley JL. 26.  2011. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43:853–66 [Google Scholar]
  27. Ding B, Wang GL. 27.  2015. Chromatin versus pathogens: the function of epigenetics in plant immunity. Front. Plant Sci. 6:675 [Google Scholar]
  28. Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schubeler D. 28.  2015. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528:575–79 [Google Scholar]
  29. Dou D, Zhou JM. 29.  2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12:484–95 [Google Scholar]
  30. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM. 30.  et al. 2012. Widespread dynamic DNA methylation in response to biotic stress. PNAS 109:E2183–91 [Google Scholar]
  31. Du J, Johnson LM, Jacobsen SE, Patel DJ. 31.  2015. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16:519–32 [Google Scholar]
  32. Duan CG, Zhang H, Tang K, Zhu X, Qian W. 32.  et al. 2015. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO J. 34:581–92 [Google Scholar]
  33. Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ. 33.  et al. 2015. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4:e05255 [Google Scholar]
  34. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A. 34.  et al. 2010. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–16 [Google Scholar]
  35. Durrant WE, Dong X. 35.  2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209 [Google Scholar]
  36. Eulgem T, Tsuchiya T, Wang XJ, Beasley B, Cuzick A. 36.  et al. 2007. EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant J. 49:829–39 [Google Scholar]
  37. Eun C, Lorkovic ZJ, Naumann U, Long Q, Havecker ER. 37.  et al. 2011. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PLOS ONE 6:e25730 [Google Scholar]
  38. Feng S, Jacobsen SE, Reik W. 38.  2010. Epigenetic reprogramming in plant and animal development. Science 330:622–27 [Google Scholar]
  39. Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y. 39.  et al. 2006. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506 [Google Scholar]
  40. Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J. 40.  et al. 2013. DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLOS Genet. 9:e1003267 [Google Scholar]
  41. Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK. 41.  2002. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–14 [Google Scholar]
  42. Halter T, Navarro L. 42.  2015. Multilayer and interconnected post-transcriptional and co-transcriptional control of plant NLRs. Curr. Opin. Plant Biol. 26:127–34 [Google Scholar]
  43. Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA. 43.  et al. 2010. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–34 [Google Scholar]
  44. Hayashi K, Yoshida H. 44.  2009. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J. 57:413–25 [Google Scholar]
  45. Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L. 45.  et al. 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–54 [Google Scholar]
  46. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R. 46.  et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–64 [Google Scholar]
  47. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. 47.  2011. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–19 [Google Scholar]
  48. Ito H, Kim JM, Matsunaga W, Saze H, Matsui A. 48.  et al. 2016. A stress-activated transposon in Arabidopsis induces transgenerational abscisic acid insensitivity. Sci. Rep. 6:23181 [Google Scholar]
  49. Iwasaki M, Paszkowski J. 49.  2014. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. PNAS 111:8547–52 [Google Scholar]
  50. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M. 50.  et al. 2009. Assessing the impact of transgenerational epigenetic variation on complex traits. PLOS Genet. 5:e1000530 [Google Scholar]
  51. Johnson LM, Du J, Hale CJ, Bischof S, Feng S. 51.  et al. 2014. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507:124–28 [Google Scholar]
  52. Jones JD, Dangl JL. 52.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  53. Jullien PE, Susaki D, Yelagandula R, Higashiyama T, Berger F. 53.  2012. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 22:1825–30 [Google Scholar]
  54. Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ. 54.  1996. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. PNAS 93:12406–11 [Google Scholar]
  55. Kang J, Dengler N. 55.  2002. Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta 216:212–19 [Google Scholar]
  56. Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJ. 56.  2004. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14:801–5 [Google Scholar]
  57. Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I. 57.  2010. Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol. 153:1859–70 [Google Scholar]
  58. Lang Z, Lei M, Wang X, Tang K, Miki D. 58.  et al. 2015. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol. Cell 57:971–83 [Google Scholar]
  59. Latzel V, Zhang Y, Karlsson Moritz K, Fischer M, Bossdorf O. 59.  2012. Epigenetic variation in plant responses to defence hormones. Ann. Bot. 110:1423–28 [Google Scholar]
  60. Law JA, Du J, Hale CJ, Feng S, Krajewski K. 60.  et al. 2013. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–89 [Google Scholar]
  61. Law JA, Jacobsen SE. 61.  2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20 [Google Scholar]
  62. Le TN, Schumann U, Smith NA, Tiwari S, Au P. 62.  et al. 2014. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15:458 [Google Scholar]
  63. Lei M, La H, Lu K, Wang P, Miki D. 63.  et al. 2014. Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns. PNAS 111:527–32 [Google Scholar]
  64. Lei M, Zhang H, Julian R, Tang K, Xie S, Zhu JK. 64.  2015. Regulatory link between DNA methylation and active demethylation in Arabidopsis. PNAS 112:3553–57 [Google Scholar]
  65. Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A. 65.  et al. 2016. Mobile small RNAs regulate genome-wide DNA methylation. PNAS 113:E801–10 [Google Scholar]
  66. Li Q, Wang X, Sun H, Zeng J, Cao Z. 66.  et al. 2015. Regulation of active DNA demethylation by a methyl-CpG-binding domain protein in Arabidopsis thaliana. PLOS Genet. 11:e1005210 [Google Scholar]
  67. Li X, Qian W, Zhao Y, Wang C, Shen J. 67.  et al. 2012. Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in Arabidopsis. PNAS 109:11425–30 [Google Scholar]
  68. Lisch D. 68.  2009. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60:43–66 [Google Scholar]
  69. Lisch D. 69.  2013. How important are transposons for plant evolution?. Nat. Rev. Genet. 14:49–61 [Google Scholar]
  70. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC. 70.  et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–36 [Google Scholar]
  71. Lopez A, Ramirez V, Garcia-Andrade J, Flors V, Vera P. 71.  2011. The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLOS Genet. 7:e1002434PolV represses SA-dependent priming, while it positively regulates JA signaling and resistance against necrotrophs. [Google Scholar]
  72. Luna E, Bruce TJ, Roberts MR, Flors V, Ton J. 72.  2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844–53Reveals the existence of a transgenerational memory of bacterial infection. [Google Scholar]
  73. Luna E, Ton J. 73.  2012. The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signal. Behav. 7:615–18 [Google Scholar]
  74. Maekawa T, Kufer TA, Schulze-Lefert P. 74.  2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12:817–26 [Google Scholar]
  75. Mari-Ordonez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O. 75.  2013. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45:1029–39Dynamic siRNA-directed PTGS-to-TGS switch in the regulation of a LTR retrotransposon that leads to trans-silencing of RPP4. [Google Scholar]
  76. Martinez G, Panda K, Köhler C, Slotkin EK. 76.  2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nature Plants 2:16030 [Google Scholar]
  77. Mathieu O, Bouche N. 77.  2014. Interplay between chromatin and RNA processing. Curr. Opin. Plant Biol. 18:60–65 [Google Scholar]
  78. Matzke MA, Mosher RA. 78.  2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:394–408 [Google Scholar]
  79. Maude RB. 79.  1996. Seed-borne diseases and their control: principles and practice. Crop Prot. 15:594 [Google Scholar]
  80. Maumus F, Quesneville H. 80.  2014. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLOS ONE 9:e94101 [Google Scholar]
  81. McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. 81.  2012. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLOS Genet. 8:e1002474 [Google Scholar]
  82. McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK. 82.  2015. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J. 34:20–35 [Google Scholar]
  83. Melnyk CW, Molnar A, Bassett A, Baulcombe DC. 83.  2011. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21:1678–83 [Google Scholar]
  84. Mi S, Cai T, Hu Y, Chen Y, Hodges E. 84.  et al. 2008. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–27 [Google Scholar]
  85. Mok YG, Uzawa R, Lee J, Weiner GM, Eichman BF. 85.  et al. 2010. Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. PNAS 107:19225–30 [Google Scholar]
  86. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 86.  2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–75 [Google Scholar]
  87. Mosher RA, Melnyk CW, Kelly KA, Dunn RM, Studholme DJ, Baulcombe DC. 87.  2009. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283–86 [Google Scholar]
  88. Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S. 88.  et al. 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135:1113–28 [Google Scholar]
  89. Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C. 89.  et al. 2013. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162:116–31 [Google Scholar]
  90. O'Malley RC, Huang SS, Song L, Lewsey MG, Bartlett A. 89a.  et al. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–92 [Google Scholar]
  91. Orgel LE, Crick FH. 90.  1980. Selfish DNA: the ultimate parasite. Nature 284:604–7 [Google Scholar]
  92. Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldan-Arjona T. 91.  2008. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67:671–81 [Google Scholar]
  93. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM. 92.  et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94 [Google Scholar]
  94. Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL. 93.  et al. 2015. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 25:1801–11 [Google Scholar]
  95. Pandey SP, Somssich IE. 94.  2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648–55 [Google Scholar]
  96. Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME. 95.  2006. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:577–87 [Google Scholar]
  97. Penterman J, Uzawa R, Fischer RL. 96.  2007. Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol. 145:1549–57 [Google Scholar]
  98. Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL. 97.  2007. DNA demethylation in the Arabidopsis genome. PNAS 104:6752–57 [Google Scholar]
  99. Qian W, Miki D, Lei M, Zhu X, Zhang H. 98.  et al. 2014. Regulation of active DNA demethylation by an alpha-crystallin domain protein in Arabidopsis. Mol Cell. 55:361–71 [Google Scholar]
  100. Qian W, Miki D, Zhang H, Liu Y, Zhang X. 99.  et al. 2012. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336:1445–48 [Google Scholar]
  101. Regulski M, Lu Z, Kendall J, Donoghue MT, Reinders J. 100.  et al. 2013. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23:1651–62 [Google Scholar]
  102. Reinders J, Wulff BB, Mirouze M, Mari-Ordonez A, Dapp M. 101.  et al. 2009. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23:939–50Differential methylation patterns in epiRILs can be inherited and are associated with differential resistance phenotypes. [Google Scholar]
  103. Rigal M, Kevei Z, Pelissier T, Mathieu O. 102.  2012. DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. EMBO J. 31:2981–93 [Google Scholar]
  104. Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG. 103.  2013. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 199:464–75 [Google Scholar]
  105. Rushton PJ, Somssich IE, Ringler P, Shen QJ. 104.  2010. WRKY transcription factors. Trends Plant Sci. 15:247–58 [Google Scholar]
  106. Saze H, Kitayama J, Takashima K, Miura S, Harukawa Y. 105.  et al. 2013. Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat. Commun. 4:2301 [Google Scholar]
  107. Shen X, De Jonge J, Forsberg SK, Pettersson ME, Sheng Z. 106.  et al. 2014. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLOS Genet. 10:e1004842CMT2 favors plant adaptation to temperature seasonality. It also promotes tolerance to high temperature. [Google Scholar]
  108. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. 107.  2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158:835–43An avirulent bacterium triggers transgenerational immune priming that is maintained over one stress-free generation. [Google Scholar]
  109. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD. 108.  et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–72 [Google Scholar]
  110. Stroud H, Do T, Du J, Zhong X, Feng S. 109.  et al. 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21:64–72 [Google Scholar]
  111. Taliaferro JM, Aspden JL, Bradley T, Marwha D, Blanchette M, Rio DC. 110.  2013. Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev. 27:378–89 [Google Scholar]
  112. Tsuchiya T, Eulgem T. 111.  2013. An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. PNAS 110:E3535–43RPP7 expression is regulated by alternative polyadenylation through dynamic methylation changes at an intronic TE. [Google Scholar]
  113. Tsuchiya T, Eulgem T. 112.  2014. The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides. Plant Signal. Behav. 9:pii:e29202 [Google Scholar]
  114. van den Burg HA, Takken FL. 113.  2009. Does chromatin remodeling mark systemic acquired resistance?. Trends Plant Sci. 14:286–94 [Google Scholar]
  115. van der Meer JW, Joosten LA, Riksen N, Netea MG. 114.  2015. Trained immunity: a smart way to enhance innate immune defence. Mol. Immunol. 68:40–44 [Google Scholar]
  116. Vongs A, Kakutani T, Martienssen RA, Richards EJ. 115.  1993. Arabidopsis thaliana DNA methylation mutants. Science 260:1926–28 [Google Scholar]
  117. Vos IA, Moritz L, Pieterse CM, Van Wees SC. 116.  2015. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front. Plant Sci. 6:639 [Google Scholar]
  118. Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ. 117.  et al. 2013. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140:2953–60 [Google Scholar]
  119. Wang B, Li F, Huang C, Yang X, Qian Y. 118.  et al. 2014. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J. Gen. Virol. 95:225–30 [Google Scholar]
  120. Wang S, Durrant WE, Song J, Spivey NW, Dong X. 119.  2010. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. PNAS 107:22716–21 [Google Scholar]
  121. Wang X, Duan CG, Tang K, Wang B, Zhang H. 120.  et al. 2013. RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1. PNAS 110:15467–72 [Google Scholar]
  122. Wildermuth MC. 121.  2010. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr. Opin. Plant Biol. 13:449–58 [Google Scholar]
  123. Williams BP, Pignatta D, Henikoff S, Gehring M. 122.  2015. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLOS Genet. 11:e1005142 [Google Scholar]
  124. Yang X, Xie Y, Raja P, Li S, Wolf JN. 123.  et al. 2011. Suppression of methylation-mediated transcriptional gene silencing by betaC1-SAHH protein interaction during geminivirus-betasatellite infection. PLOS Pathog. 7:e1002329 [Google Scholar]
  125. Yu A, Lepere G, Jay F, Wang J, Bapaume L. 124.  et al. 2013. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. PNAS 110:2389–94DNA methylation and active demethylation antagonistically control immune-responsive gene expression and orchestrate antibacterial defense in Arabidopsis. [Google Scholar]
  126. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L. 125.  et al. 2013. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205 [Google Scholar]
  127. Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B. 126.  et al. 2010. Local DNA hypomethylation activates genes in rice endosperm. PNAS 107:18729–34 [Google Scholar]
  128. Zhang H, Zhu JK. 127.  2012. Active DNA demethylation in plants and animals. Cold Spring Harb. Symp. Quant. Biol. 77:161–73 [Google Scholar]
  129. Zheng X, Zhu J, Kapoor A, Zhu JK. 128.  2007. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 26:1691–701 [Google Scholar]
  130. Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S. 129.  et al. 2014. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–60 [Google Scholar]
  131. Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK. 130.  2007. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17:54–59 [Google Scholar]
  132. Zhu JK. 131.  2009. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43:143–66 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100308
Loading
/content/journals/10.1146/annurev-phyto-080615-100308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error