1932

Abstract

Smut fungi are a large group of biotrophic plant pathogens that infect mostly monocot species, including economically relevant cereal crops. For years, has stood out as the model system to study the genetics and cell biology of smut fungi as well as the pathogenic development of biotrophic plant pathogens. The identification and functional characterization of secreted effectors and their role in virulence have particularly been driven forward using the –maize pathosystem. Today, advancing tools for additional smut fungi such as and , as well as an increasing number of available genome sequences, provide excellent opportunities to investigate in parallel the effector function and evolution associated with different lifestyles and host specificities. In addition, genome analyses revealed similarities in the genomic signature between pathogenic smuts and epiphytic species. This review elaborates on how knowledge about fungal lifestyles, genome biology, and functional effector biology has helped in understanding the biology of this important group of fungal pathogens. We highlight the contribution of the model system but also discuss the differences from other smut fungi, which raises the importance of comparative genomic and genetic analyses in future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100139
2019-08-25
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100139.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100139&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ali S, Laurie JD, Linning R, Cervantes-Chávez JA, Gaudet D, Bakkeren G 2014. An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLOS Pathog 10:7e1004223
    [Google Scholar]
  2. 2. 
    Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G et al. 2017. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol. Ecol. 26:72041–62
    [Google Scholar]
  3. 3. 
    Bakkeren G, Kronstad JW. 1994. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. PNAS 91:157085–89
    [Google Scholar]
  4. 4. 
    Banuett F. 1991. Identification of genes governing filamentous growth and tumor induction by the plant pathogen Ustilago maydis. PNAS 88:93922–26
    [Google Scholar]
  5. 5. 
    Banuett F. 2007. History of the mating types in Ustilago maydis. Sex in Fungi: Molecular Determination and Evolutionary Implications J Heitman, JW Kronstad, JW Taylor, LA Casselton 351–75 Bel Air, MD: Am. Soc. Microbiol.
    [Google Scholar]
  6. 6. 
    Banuett F, Herskowitz I. 1989. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. PNAS 86:155878–82
    [Google Scholar]
  7. 7. 
    Baumgarten AM, Suresh J, May G, Phillips RL 2007. Mapping QTLs contributing to Ustilago maydis resistance in specific plant tissues of maize. Theor. Appl. Genet. 114:71229–38
    [Google Scholar]
  8. 8. 
    Beckmann J. 1768. Des Herrn Tillet Beobachtung einer Krankheit des türkischen Weizens oder der Mais. Hann. Mag. 6:1329–39
    [Google Scholar]
  9. 9. 
    Begerow D, Schäfer AM, Kellner R, Yurkov A, Kemler M et al. 2014. Ustilaginomycotina. Systematics and Evolution DJ McLaughlin, JW Spatafora 295–329 Dordrecht, Neth: Springer
    [Google Scholar]
  10. 10. 
    Benevenuto J, Teixeira-Silva NS, Kuramae EE, Croll D, Monteiro-Vitorello CB 2018. Comparative genomics of smut pathogens: insights from orphans and positively selected genes into host specialization. Front. Microbiol. 9:660
    [Google Scholar]
  11. 11. 
    Bölker M, Genin S, Lehmler C, Kahmann R 1995. Genetic regulation of mating and dimorphism in Ustilago maydis. Can. J. Bot 73:S1320–25
    [Google Scholar]
  12. 12. 
    Bölker M, Urban M, Kahmann R 1992. The a mating type locus of U. maydis specifies cell signaling components. Cell 68:3441–50
    [Google Scholar]
  13. 13. 
    Bolton MD, Kolmer JA, Garvin DF 2008. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol 9:5563–75
    [Google Scholar]
  14. 14. 
    Brachmann A, König J, Julius C, Feldbrügge M 2004. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol. Genet. Genom 272:2216–26
    [Google Scholar]
  15. 15. 
    Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R 2009. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 47:423–45
    [Google Scholar]
  16. 16. 
    Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:209452–57
    [Google Scholar]
  17. 17. 
    Chen Y, Chao Q, Tan G, Zhao J, Zhang M et al. 2008. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117:81241–52
    [Google Scholar]
  18. 18. 
    Christensen JJ. 1963. Corn smut caused by Ustilago maydis. Rep. 1119, Am Phytopathol. Soc., St. Paul, MN
  19. 19. 
    Chung KR, Tzeng DD. 2004. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J. Biol. Sci 4:6744–50
    [Google Scholar]
  20. 20. 
    Croll D, McDonald BA. 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLOS Pathog 8:4e1002608
    [Google Scholar]
  21. 21. 
    Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D et al. 2017. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. Genes Genomes Genet 7:2361–76
    [Google Scholar]
  22. 22. 
    Daverdin G, Rouxel T, Gout L, Aubertot JN, Fudal I et al. 2012. Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLOS Pathog 8:11e1003020
    [Google Scholar]
  23. 23. 
    Djamei A, Kahmann R. 2012. Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLOS Pathog 8:11e1002955
    [Google Scholar]
  24. 24. 
    Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478:7369395–98
    [Google Scholar]
  25. 25. 
    Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11:8539–48
    [Google Scholar]
  26. 26. 
    Doehlemann G, Reissmann S, Aßmann D, Fleckenstein M, Kahmann R 2011. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis–induced tumour formation. Mol. Microbiol. 81:3751–66
    [Google Scholar]
  27. 27. 
    Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A et al. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLOS Pathog 5:2e1000290
    [Google Scholar]
  28. 28. 
    Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B et al. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:2181–95
    [Google Scholar]
  29. 29. 
    Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 108:229166–71
    [Google Scholar]
  30. 30. 
    Dutheil JY, Mannhaupt G, Schweizer G, Sieber CM, Münsterkötter M et al. 2016. A tale of genome compartmentalization: the evolution of virulence clusters in smut fungi. Genome Biol. Evol. 8:3681–704
    [Google Scholar]
  31. 31. 
    Ebba T, Person C. 1975. Genetic control of virulence in Ustilago hordei. IV. Duplicate genes for virulence and genetic and environmental modification of a gene-for-gene relationship. Can. J. Genet. Cytol. 17:4631–36
    [Google Scholar]
  32. 32. 
    Faino L, Seidl MF, Shi-Kunne X, Pauper M, Van Den Berg GCM et al. 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:81091–100
    [Google Scholar]
  33. 33. 
    Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A et al. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front. Plant Sci. 6:132
    [Google Scholar]
  34. 34. 
    Gao L, Kelliher T, Nguyen L, Walbot V 2013. Ustilago maydis reprograms cell proliferation in maize anthers. Plant J 75:6903–14
    [Google Scholar]
  35. 35. 
    Ghareeb H, Drechsler F, Löfke C, Teichmann T, Schirawski J 2015. SUPPRESSOR OF APICAL DOMINANCE 1 of Sporisorium reilianum modulates inflorescence branching architecture in maize and Arabidopsis. Plant Physiol 169:42789–804
    [Google Scholar]
  36. 36. 
    Ghareeb H, Zhao Y, Schirawski J 2018. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize. Mol. Plant Pathol. 20:1124–36
    [Google Scholar]
  37. 37. 
    Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68:4647–57
    [Google Scholar]
  38. 38. 
    Grewal TS, Rossnagel BG, Bakkeren G, Scoles GJ 2008. Identification of resistance genes to barley covered smut and mapping of the Ruh1 gene using Ustilago hordei strains with defined avirulence genes. Can. J. Plant Pathol. 30:2277–84
    [Google Scholar]
  39. 39. 
    Groth JV. 1974. Parasitism of barley byUstilago hordei (Pers.) Lagerh.: some quantitative aspects of disease expression PhD Thesis, Univ. B. C Vancouver:
    [Google Scholar]
  40. 40. 
    Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G et al. 2015. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:31116–26
    [Google Scholar]
  41. 41. 
    Holliday R. 2004. Early studies on recombination and DNA repair in Ustilago maydis. DNA Repair 3:6671–82
    [Google Scholar]
  42. 42. 
    Hsueh YP, Heitman J. 2008. Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Cur. Opin. Microbiol. 11:6517–24
    [Google Scholar]
  43. 43. 
    Jin QM, Li JP, Wang LX, Wang ZY, Sha HL et al. 2003. The epidemiological factors and control tactics of head smut in spring corn area of northeast of China. J. Maize Sci. 1:86–87
    [Google Scholar]
  44. 44. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  45. 45. 
    Kahmann R, Schirawski J. 2007. Mating in the smut fungi: from a to b to the downstream cascades. Sex in Fungi: Molecular Determination and Evolutionary Implications J Heitman, JW Kronstad, JW Taylor, LA Casselton 377–87 Bel Air, MD: Am. Soc. Microbiol.
    [Google Scholar]
  46. 46. 
    Kämper J. 2004. A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol. Genet. Genom 271:1103–10
    [Google Scholar]
  47. 47. 
    Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:711597–101
    [Google Scholar]
  48. 48. 
    Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R 1995. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:173–83
    [Google Scholar]
  49. 49. 
    Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB et al. 2018. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat. Genet. 50:3375–80
    [Google Scholar]
  50. 50. 
    Kijpornyongpan T, Mondo SJ, Barry K, Sandor L, Lee J et al. 2018. Broad genomic sampling reveals a smut pathogenic ancestry of the fungal clade Ustilaginomycotina. Mol. Biol. Evol. 35:81840–54
    [Google Scholar]
  51. 51. 
    Knox RE, Campbell HL, Clarke FR, Menzies JG, Popovic Z et al. 2014. Quantitative trait loci for resistance in wheat (Triticum aestivum) to Ustilago tritici. Can. J. Plant Pathol 36:2187–201
    [Google Scholar]
  52. 51a. 
    Konishi M, Hatada Y, Horiuchi J-i 2013. Draft genome sequence of the basidiomycetous yeast-like fungus Pseudozyma hubeienensis SY62, which produces an abundant amount of the biosurfactant mannosylerythritol lipids. Genome Announc 1:e00409–13
    [Google Scholar]
  53. 52. 
    Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R 2018. Virulence function of the Ustilago maydis sterol carrier protein 2. New Phytol 220:2553–66
    [Google Scholar]
  54. 53. 
    Kruse J, Dietrich W, Zimmermann H, Klenke F, Richter U et al. 2018. Ustilago species causing leaf-stripe smut revisited. IMA Fungus 9:149–73
    [Google Scholar]
  55. 54. 
    Kumar S, Knox RE, Singh AK, DePauw RM, Campbell HL et al. 2018. High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross. PLOS ONE 13:2e0192261
    [Google Scholar]
  56. 55. 
    Lanver D, Müller AN, Happel P, Schweizer G, Haas FB et al. 2018. The biotrophic development of Ustilago maydis studied by RNAseq analysis. Plant Cell 30:2300–23
    [Google Scholar]
  57. 56. 
    Lanver D, Tollot M, Schweizer G, Lo Presti L, Reissmann S et al. 2017. Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol. 15:7409–21
    [Google Scholar]
  58. 57. 
    Laur J, Ramakrishnan GB, Labbé C, Lefebvre F, Spanu PD, Bélanger RR 2018. Effectors involved in fungal-fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent-powdery mildew-plant. New Phytol 217:2713–25
    [Google Scholar]
  59. 58. 
    Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P et al. 2012. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:51733–45
    [Google Scholar]
  60. 59. 
    Lefebvre F, Joly DL, Labbe C, Teichmann B, Linning R et al. 2013. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Plant Cell 25:61946–59
    [Google Scholar]
  61. 60. 
    Leonard KJ, Szabo LJ. 2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol 6:299–111
    [Google Scholar]
  62. 61. 
    Li P, Ponnala L, Gandotra N, Wang L, Si Y et al. 2010. The developmental dynamics of the maize leaf transcriptome. Nat. Genet. 42:121060–67
    [Google Scholar]
  63. 62. 
    Li WH, Xu XD, Li G, Guo LQ, Wu SW et al. 2012. Characterization and molecular mapping of RsrR, a resistant gene to maize head smut. Euphytica 187:3303–11
    [Google Scholar]
  64. 63. 
    Li XH, Wang ZH, Gao SR, Shi HL, Zhang SH et al. 2008. Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field Crops Res 106:2148–55
    [Google Scholar]
  65. 64. 
    Li YX, Wu X, Jaqueth J, Zhang D, Cui D et al. 2015. The identification of two head smut resistance-related QTL in maize by the joint approach of linkage mapping and association analysis. PLOS ONE 10:121–16
    [Google Scholar]
  66. 64a. 
    Lorenz S, Guenther M, Grumaz C, Rupp S, Zibek S, Sohn K 2014. Genome sequence of the basidiomycetous fungus Pseudozyma aphidis DSM70725, an efficient producer of biosurfactant mannosylerythritol lipids. Genome Announc 2:e00064–13
    [Google Scholar]
  67. 65. 
    Lübberstedt T, Klein D, Melchinger AE 1998. Comparative QTL mapping of resistance to Ustilago maydis across four populations of European flint-maize. Theor. Appl. Genet. 97:81321–30
    [Google Scholar]
  68. 66. 
    Lübberstedt T, Xia XC, Tan G, Liu X, Melchinger AE 1999. QTL mapping of resistance to Sporisorium reiliana in maize. Theor. Appl. Genet. 99:3–4593–98
    [Google Scholar]
  69. 67. 
    Ma LS, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S et al. 2018. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat. Commun. 9:1711
    [Google Scholar]
  70. 68. 
    Martinez C, Roux C, Dargent R 1999. Biotrophic development of Sporisorium reilianum f. sp. zeae in vegetative shoot apex of maize. Phytopathology 89:3247–53
    [Google Scholar]
  71. 69. 
    Martinez C, Roux C, Jauneau A, Dargent R 2002. The biological cycle of Sporisorium reilianum f.sp. zeae: an overview using microscopy. Mycologia 94:3505–14
    [Google Scholar]
  72. 70. 
    Martínez-Espinoza AD, García-Pedrajas MD, Gold SE 2002. The Ustilaginales as plant pests and model systems. Fungal Genet. Biol. 35:11–20
    [Google Scholar]
  73. 71. 
    Matei A, Doehlemann G. 2016. Cell biology of corn smut disease: Ustilago maydis as a model for biotrophic interactions. Curr. Opin. Microbiol. 34:60–66
    [Google Scholar]
  74. 72. 
    Matei A, Ernst C, Günl M, Thiele B, Altmüller J et al. 2018. How to make a tumour: cell type specific dissection of Ustilago maydis–induced tumour development in maize leaves. New Phytol 217:41681–95
    [Google Scholar]
  75. 73. 
    Menzies JG. 2016. Virulence of isolates of Ustilago tritici collected in Manitoba and Saskatchewan, Canada, from 1999 to 2007. Can. J. Plant Pathol. 38:4470–75
    [Google Scholar]
  76. 74. 
    Menzies JG, Nielsen J, Thomas PL, Knox RE 2003. Virulence of Canadian isolates of Ustilago tritici: 1964–1998, and the use of the geometric rule in understanding host differential complexity. Can. J. Plant Pathol. 25:162–72
    [Google Scholar]
  77. 75. 
    Metcalfe DR. 1962. Inheritance of resistance to loose smut, covered smut and false loose smut in the barley variety Jet. Can. J. Plant Sci. 42:1176–89
    [Google Scholar]
  78. 76. 
    Misas-Villamil JC, van der Hoorn RAL, Doehlemann G 2016. Papain-like cysteine proteases as hubs in plant immunity. New Phytol 212:4902–7
    [Google Scholar]
  79. 76a. 
    Morita T, Koike H, Koyama Y, Hagiwara H, Ito E et al. 2013. Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants. Genome Announc
    [Google Scholar]
  80. 77. 
    Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G 2013. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLOS Pathog 9:2e1003177
    [Google Scholar]
  81. 78. 
    Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP 2008. The secretome of the maize pathogen Ustilago maydis. Fungal Genet. Biol 45:S63–70
    [Google Scholar]
  82. 79. 
    Nielsen J. 1972. Isolation and culture of monokaryotic haplonts of Ustilago tritici, observations on their physiology, and the taxonomic relationship between U. tritici and U. nuda. Can. J. Bot 50:81775–81
    [Google Scholar]
  83. 80. 
    Ökmen B, Kemmerich B, Hilbig D, Wemhöner R, Aschenbroich J et al. 2018. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. New Phytol 220:1249–61
    [Google Scholar]
  84. 81. 
    Ökmen B, Mathow D, Hof A, Lahrmann U, Aßmann D, Doehlemann G 2018. Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19:122603–22
    [Google Scholar]
  85. 82. 
    Oliveira JV, Borges TA, dos Santos RAC, Freitas LFD, Rosa CA et al. 2014. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. Int. J. Syst. Evol. Microbiol 64:Pt. 62159–68
    [Google Scholar]
  86. 83. 
    Poloni A, Schirawski J. 2016. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Mol. Plant Pathol. 17:5741–54
    [Google Scholar]
  87. 84. 
    Potter AA. 1914. Head smut of sorghum and maize. J. Agric. Res. 2:5339–80
    [Google Scholar]
  88. 85. 
    Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L et al. 2016. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. eLife 5:e20522
    [Google Scholar]
  89. 86. 
    Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:6417–30
    [Google Scholar]
  90. 87. 
    Randhawa HS, Popovic Z, Menzies J, Knox R, Fox S 2009. Genetics and identification of molecular markers linked to resistance to loose smut (Ustilago tritici) race T33 in durum wheat. Euphytica 169:2151–57
    [Google Scholar]
  91. 88. 
    Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M et al. 2015. A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell 27:41332–51
    [Google Scholar]
  92. 89. 
    Redkar A, Matei A, Doehlemann G 2017. Insights into host cell modulation and induction of new cells by the corn smut Ustilago maydis. Front. Plant Sci 8:899
    [Google Scholar]
  93. 90. 
    Redkar A, Villajuana-Bonequi M, Doehlemann G 2015. Conservation of the Ustilago maydis effector see1 in related smuts. Plant Signal. Behav. 10:12e1086855
    [Google Scholar]
  94. 91. 
    Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S et al. 2012. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol 158:41583–99
    [Google Scholar]
  95. 92. 
    Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC et al. 2018. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet 50:3368–74
    [Google Scholar]
  96. 93. 
    Savchenko KG, Carris LM, Castlebury LA, Heluta VP, Wasser SP, Nevo E 2014. Stripe smuts of grasses: one lineage or high levels of polyphyly?. Persoonia 33:169–81
    [Google Scholar]
  97. 94. 
    Schilling L, Matei A, Redkar A, Walbot V, Doehlemann G 2014. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Mol. Plant Pathol. 15:8780–89
    [Google Scholar]
  98. 95. 
    Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K et al. 2010. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:60101546–48
    [Google Scholar]
  99. 96. 
    Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W et al. 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:2295–306
    [Google Scholar]
  100. 97. 
    Schuster M, Schweizer G, Kahmann R 2018. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes. Fungal Genet. Biol. 112:21–30
    [Google Scholar]
  101. 98. 
    Schuster M, Schweizer G, Reissmann S, Kahmann R 2016. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet. Biol. 89:3–9
    [Google Scholar]
  102. 99. 
    Seidl MF, Thomma BPHJ. 2017. Transposable elements direct the coevolution between plants and microbes. Trends Genet 33:11842–51
    [Google Scholar]
  103. 100. 
    Sharma R, Mishra B, Runge F, Thines M 2014. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum.. Genome Biol. Evol 6:82034–49
    [Google Scholar]
  104. 101. 
    Sharma R, Oekmen B, Doehlemann G, Thines M 2018. Pseudozyma saprotrophic yeasts have retained a large effector arsenal, including functional Pep1 orthologs. bioRxiv 489690. https://doi.org/10.1101/489690
    [Crossref]
  105. 102. 
    Sidhu G, Person C. 1972. Genetic control of virulence in Ustilago hordei III. Identification of genes for host resistance and demonstration of gene-for-gene relations. Can. J. Genet. Cytol. 14:2209–13
    [Google Scholar]
  106. 103. 
    Skibbe DS, Doehlemann G, Fernandes J, Walbot V 2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:597489–92
    [Google Scholar]
  107. 104. 
    Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R 1994. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13:71620–27
    [Google Scholar]
  108. 105. 
    Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L et al. 2016. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210:2743–61
    [Google Scholar]
  109. 106. 
    Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:91312–13
    [Google Scholar]
  110. 107. 
    Statzell-Tallman A, Scorzetti G, Fell JW 2010. Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems. Int. J. Syst. Evol. Microbiol 60:81978–84
    [Google Scholar]
  111. 108. 
    Stergiopoulos I, De Kock MJD, Lindhout P, De Wit PJGM 2007. Allelic variation in the effector genes of the tomato pathogen Cladosporium fulvum reveals different modes of adaptive evolution. Mol. Plant-Microbe Interact. 20:101271–83
    [Google Scholar]
  112. 109. 
    Stirnberg A, Djamei A. 2016. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.. Mol. Plant Pathol 17:91467–79
    [Google Scholar]
  113. 110. 
    Sugita T, Takashima M, Poonwan N, Mekha N, Malaithao K et al. 2003. The first isolation of ustilaginomycetous anamorphic yeasts, Pseudozyma species, from patients’ blood and a description of two new species: P. parantarctica and P. thailandica. Microbiol. Immunol 47:3183–90
    [Google Scholar]
  114. 111. 
    Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J et al. 2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife 2014:3e01355
    [Google Scholar]
  115. 112. 
    Tanaka S, Schweizer G, Rössel N, Fukada F, Thines M, Kahmann R 2018. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Nat. Microbiol 4:251–57
    [Google Scholar]
  116. 113. 
    Taniguti LM, Schaker PDC, Benevenuto J, Peters LP, Carvalho G et al. 2015. Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLOS ONE 10:6e0129318
    [Google Scholar]
  117. 114. 
    Tapke VF. 1937. Physiologic races of Ustilago hordei.. J. Agric. Res 55:9683–92
    [Google Scholar]
  118. 115. 
    Tapke VF. 1945. New physiologic races of Ustilago hordei. Phytopathology 35:12970–76
    [Google Scholar]
  119. 116. 
    Thomas PL. 1976. Interaction of virulence genes in Ustilago hordei. Can. J. Genet. Cytol 18:698141–49
    [Google Scholar]
  120. 117. 
    Thomas PL. 1988. Ustilago hordei, covered smut of barley and Ustilago nigra, false loose smut of barley. Adv. Plant Pathol. 6:415–25
    [Google Scholar]
  121. 118. 
    van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RAL et al. 2012. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24:31285–300
    [Google Scholar]
  122. 119. 
    van der Linde K, Mueller AN, Hemetsberger C, Kashani F, van der Hoorn RAL, Doehlemann G 2012. The maize cystatin CC9 interacts with apoplastic cysteine proteases. Plant Signal. Behav. 7:111397–401
    [Google Scholar]
  123. 120. 
    van der Linde K, Timofejeva L, Egger RL, Ilau B, Hammond R et al. 2018. Pathogen Trojan horse delivers bioactive host protein to alter maize (Zea mays) anther cell behavior in situ. Plant Cell 30:3528–42
    [Google Scholar]
  124. 121. 
    Verma S, Dixit R, Pandey KC 2016. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol 7:107
    [Google Scholar]
  125. 122. 
    Villamil JCM, Mueller AN, Demir F, Meyer U, Ökmen B et al. 2019. A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nat. Commun. 10:11576
    [Google Scholar]
  126. 123. 
    Wang J, Holden D, Leong S 1988. Gene transfer system for the phytopathogenic fungus Ustilago maydis. PNAS 85:3865–69
    [Google Scholar]
  127. 124. 
    Wang M, Yan J, Zhao J, Song W, Zhang X et al. 2012. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–31
    [Google Scholar]
  128. 125. 
    Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P et al. 2017. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35:3543–48
    [Google Scholar]
  129. 126. 
    Wells SA. 1958. Inheritance of reaction to Ustilago hordei (Pers.) Lagerh. in cultivated barley. Can. J. Plant Sci. 38:145–60
    [Google Scholar]
  130. 127. 
    Ye Z, Pan Y, Zhang Y, Cui H, Jin G et al. 2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 24:6635–48
    [Google Scholar]
  131. 127a. 
    Zambanini T, Buescher JM, Meurer G, Wierckx N, Blank LM 2016. Draft genome sequence of Ustilago trichophora RK089, a promising malic acid producer. Genome Announc 4:e00749–16
    [Google Scholar]
  132. 128. 
    Zhang N, Zhang B, Zuo W, Xing Y, Konlasuk S et al. 2017. Cytological and molecular characterization of ZmWAK-mediated head-smut resistance in maize. Mol. Plant-Microbe Interact. 30:6455–65
    [Google Scholar]
  133. 129. 
    Zhao X, Wei L, Chao Q, Zuo W, Xu M et al. 2012. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol. Breed. 30:21077–88
    [Google Scholar]
  134. 130. 
    Ziemann S, van der Linde K, Lahrmann U, Acar B, Kaschani F et al. 2018. An apoplastic peptide activates salicylic acid signalling in maize. Nat. Plants 4:3172–80
    [Google Scholar]
  135. 131. 
    Zogg H. 1972. Die Tilletia-Streifenbrandkrankheiten der Gräser. J. Phytopathol. 74:3218–29
    [Google Scholar]
  136. 132. 
    Zuo W, Chao Q, Zhang N, Ye J, Tan G et al. 2015. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47:2151–57
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100139
Loading
/content/journals/10.1146/annurev-phyto-082718-100139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error