1932

Abstract

Phytopathogenic fungi have evolved an amazing diversity of infection modes and nutritional strategies, yet the signaling pathways that govern pathogenicity are remarkably conserved. Protein kinases (PKs) catalyze the reversible phosphorylation of proteins, regulating a variety of cellular processes. Here, we present an overview of our current understanding of the different classes of PKs that contribute to fungal pathogenicity on plants and of the mechanisms that regulate and coordinate PK activity during infection-related development. In addition to the well-studied PK modules, such as MAPK (mitogen-activated protein kinase) and cAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) cascades, we also discuss new PK pathways that have emerged in recent years as key players of pathogenic development and disease. Understanding how conserved PK signaling networks have been recruited during the evolution of fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-050143
2014-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-102313-050143.html?itemId=/content/journals/10.1146/annurev-phyto-102313-050143&mimeType=html&fmt=ahah

Literature Cited

  1. Alex LA, Borkovich KA, Simon MI. 1.  1996. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc. Natl. Acad. Sci. USA 93:3416–21 [Google Scholar]
  2. Alex LA, Korch C, Selitrennikoff CP, Simon MI. 2.  1998. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc. Natl. Acad. Sci. USA 95:7069–73 [Google Scholar]
  3. Andrews DL, Egan JD, Mayorga ME, Gold SE. 3.  2000. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol. Plant-Microbe Interact. 13:781–86 [Google Scholar]
  4. Bahn YS, Kojima K, Cox GM, Heitman J. 4.  2006. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell 17:3122–35 [Google Scholar]
  5. Banuett F, Herskowitz I. 5.  1994. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev. 8:1367–78 [Google Scholar]
  6. Berndt P, Lanver D, Kahmann R. 6.  2010. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis. Mol. Microbiol. 78:1484–99 [Google Scholar]
  7. Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD. 7.  2007. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact. 20:627–36 [Google Scholar]
  8. Boyce KJ, Andrianopoulos A. 8.  2011. Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol. 19:400–10 [Google Scholar]
  9. Brachmann A, Schirawski J, Muller P, Kahmann R. 9.  2003. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J. 22:2199–210 [Google Scholar]
  10. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. 10.  2004. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot. Cell 3:1525–32 [Google Scholar]
  11. Buck V, Quinn J, Soto Pino T, Martin H, Saldanha J. 11.  et al. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12:407–19 [Google Scholar]
  12. Carbo N, Perez-Martin J. 12.  2010. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis. PLoS Genet. 6:e1001009 [Google Scholar]
  13. Castillo-Lluva S, Alvarez-Tabares I, Weber I, Steinberg G, Perez-Martin J. 13.  2007. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. J. Cell Sci. 120:1584–95 [Google Scholar]
  14. Catlett NL, Yoder OC, Turgeon BG. 14.  2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2:1151–61 [Google Scholar]
  15. Chabrier-Rosello Y, Gerik KJ, Koselny K, DiDone L, Lodge JK, Krysan DJ. 15.  2013. Cryptococcus neoformans phosphoinositide-dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes. Eukaryot. Cell 12:12–22 [Google Scholar]
  16. Chen C, Dickman MB. 16.  2004. Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol. Microbiol. 51:1493–507 [Google Scholar]
  17. Chen C, Dickman MB. 17.  2005. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Mol. Microbiol. 55:299–311 [Google Scholar]
  18. Chen J, Zheng W, Zheng S, Zhang D, Sang W. 18.  et al. 2008. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog. 4:e1000202 [Google Scholar]
  19. Chen LH, Lin CH, Chung KR. 19.  2012. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet. Biol. 49:802–13 [Google Scholar]
  20. Cho Y, Kim KH, La Rota M, Scott D, Santopietro G. 20.  et al. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol. Microbiol. 72:1316–33 [Google Scholar]
  21. Choi W, Dean RA. 21.  1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–83 [Google Scholar]
  22. Cohen P. 22.  2000. The regulation of protein function by multisite phosphorylation: a 25 year update. Trends Biochem. Sci. 25:596–601 [Google Scholar]
  23. Colabardini AC, Brown NA, Savoldi M, Goldman MH, Goldman GH. 23.  2013. Functional characterization of Aspergillus nidulans ypkA, a homologue of the mammalian kinase SGK. PLoS ONE 8:e57630 [Google Scholar]
  24. Cui W, Beever RE, Parkes SL, Weeds PL, Templeton MD. 24.  2002. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet. Biol. 36:187–98 [Google Scholar]
  25. Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E. 25.  et al. 2012. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–95 [Google Scholar]
  26. Davidson RC, Nichols CB, Cox GM, Perfect JR, Heitman J. 26.  2003. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 49:469–85 [Google Scholar]
  27. Deng F, Allen TD, Nuss DL. 27.  2007. Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 6:235–44 [Google Scholar]
  28. de Sena-Tomas C, Fernandez-Alvarez A, Holloman WK, Perez-Martin J. 28.  2011. The DNA damage response signaling cascade regulates proliferation of the phytopathogenic fungus Ustilago maydis in planta. Plant Cell 23:1654–65 [Google Scholar]
  29. De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS. 29.  et al. 2013. Functional analysis of the Aspergillus nidulans kinome. PLoS ONE 8:e58008 [Google Scholar]
  30. Dettmann A, Illgen J, Marz S, Schurg T, Fleissner A, Seiler S. 30.  2012. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa. PLoS Genet. 8:e1002950 [Google Scholar]
  31. Di Pietro A, Garcia-Maceira FI, Meglecz E, Roncero MI. 31.  2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 39:1140–52 [Google Scholar]
  32. Dixon KP, Xu JR, Smirnoff N, Talbot NJ. 32.  1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–58 [Google Scholar]
  33. Doehlemann G, Berndt P, Hahn M. 33.  2006. Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol. Microbiol. 59:821–35 [Google Scholar]
  34. Durrenberger F, Kronstad J. 34.  1999. The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis. Mol. Gen. Genet. 261:281–89 [Google Scholar]
  35. Durrenberger F, Wong K, Kronstad JW. 35.  1998. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc. Natl. Acad. Sci. USA 95:5684–89 [Google Scholar]
  36. Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. 36.  2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA 104:11772–77 [Google Scholar]
  37. Garcia-Muse T, Steinberg G, Perez-Martin J. 37.  2004. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J. Cell Sci. 117:487–506 [Google Scholar]
  38. Garrenton LS, Stefan CJ, McMurray MA, Emr SD, Thorner J. 38.  2010. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl. Acad. Sci. USA 107:11805–10 [Google Scholar]
  39. Garrido E, Voss U, Muller P, Castillo-Lluva S, Kahmann R, Perez-Martin J. 39.  2004. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev. 18:3117–30 [Google Scholar]
  40. Gladfelter AS. 40.  2010. Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Curr. Opin. Microbiol. 13:720–26 [Google Scholar]
  41. Gold S, Duncan G, Barrett K, Kronstad J. 41.  1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8:2805–16 [Google Scholar]
  42. Gold SE, Brogdon SM, Mayorga ME, Kronstad JW. 42.  1997. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9:1585–94 [Google Scholar]
  43. Grutter C, Simard JR, Mayer-Wrangowski SC, Schreier PH, Perez-Martin J. 43.  et al. 2012. Targeting GSK3 from Ustilago maydis: type-II kinase inhibitors as potential antifungals. ACS Chem. Biol. 7:1257–67 [Google Scholar]
  44. Guillas I, Vernay A, Vitagliano JJ, Arkowitz RA. 44.  2013. Phosphatidylinositol 4,5-bisphosphate is required for invasive growth in Saccharomyces cerevisiae. J. Cell Sci. 126:3602–14 [Google Scholar]
  45. Hamel LP, Nicole MC, Duplessis S, Ellis BE. 45.  2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–51 [Google Scholar]
  46. Harris SD, Momany M. 46.  2004. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41:391–400 [Google Scholar]
  47. Hartmann HA, Kahmann R, Bolker M. 47.  1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15:1632–41 [Google Scholar]
  48. Heller J, Ruhnke N, Espino JJ, Massaroli M, Collado IG, Tudzynski P. 48.  2012. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Mol. Plant-Microbe Interact. 25:802–16 [Google Scholar]
  49. Heller J, Tudzynski P. 49.  2011. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu. Rev. Phytopathol. 49:369–90 [Google Scholar]
  50. Higuchi Y, Shoji JY, Arioka M, Kitamoto K. 50.  2009. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryot. Cell 8:37–46 [Google Scholar]
  51. Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR. 51.  2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact. 15:1119–27 [Google Scholar]
  52. Igbaria A, Lev S, Rose MS, Lee BN, Hadar R. 52.  et al. 2008. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol. Plant-Microbe Interact. 21:769–80 [Google Scholar]
  53. Izumitsu K, Yoshimi A, Kubo D, Morita A, Saitoh Y, Tanaka C. 53.  2009. The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus. Curr. Genet. 55:439–48 [Google Scholar]
  54. Jacinto E, Hall MN. 54.  2003. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4:117–26 [Google Scholar]
  55. Jenczmionka NJ, Maier FJ, Losch AP, Schafer W. 55.  2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87–95 [Google Scholar]
  56. Jenczmionka NJ, Schafer W. 56.  2005. The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr. Genet. 47:29–36 [Google Scholar]
  57. Jeon J, Goh J, Yoo S, Chi MH, Choi J. 57.  et al. 2008. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant-Microbe Interact. 21:525–34 [Google Scholar]
  58. Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P. 58.  et al. 2011. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol. 13:62–80 [Google Scholar]
  59. Kaffarnik F, Muller P, Leibundgut M, Kahmann R, Feldbrugge M. 59.  2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J. 22:5817–26 [Google Scholar]
  60. Kershaw MJ, Talbot NJ. 60.  2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. USA 106:15967–72 [Google Scholar]
  61. Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T. 61.  2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol. Plant-Microbe Interact. 15:1268–76 [Google Scholar]
  62. Kruger J, Loubradou G, Regenfelder E, Hartmann A, Kahmann R. 62.  1998. Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol. Gen. Genet. 260:193–98 [Google Scholar]
  63. Kruger J, Loubradou G, Wanner G, Regenfelder E, Feldbrugge M, Kahmann R. 63.  2000. Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol. Plant-Microbe Interact. 13:1034–40 [Google Scholar]
  64. Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R. 64.  2010. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell 22:2085–101 [Google Scholar]
  65. Lee N, Kronstad JW. 65.  2002. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot. Cell 1:954–66 [Google Scholar]
  66. Lee SH, Lee J, Lee S, Park EH, Kim KW. 66.  et al. 2009. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot. Cell 8:116–27 [Google Scholar]
  67. Lee YH, Dean RA. 67.  1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700 [Google Scholar]
  68. Lev S, Horwitz BA. 68.  2003. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15:835–44 [Google Scholar]
  69. Lev S, Sharon A, Hadar R, Ma H, Horwitz BA. 69.  1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. USA 96:13542–47 [Google Scholar]
  70. Lev S, Tal H, Rose MS, Horwitz BA. 70.  2009. Signaling by the pathogenicity-related MAP kinase of Cochliobolus heterostrophus correlates with its local accumulation rather than phosphorylation. Mol. Plant-Microbe Interact. 22:1093–103 [Google Scholar]
  71. Leveleki L, Mahlert M, Sandrock B, Bolker M. 71.  2004. The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis. Mol. Microbiol. 54:396–406 [Google Scholar]
  72. Levin DE. 72.  2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69:262–91 [Google Scholar]
  73. Li D, Agrellos OA, Calderone R. 73.  2010. Histidine kinases keep fungi safe and vigorous. Curr. Opin. Microbiol. 13:424–30 [Google Scholar]
  74. Li G, Zhou X, Xu JR. 74.  2012. Genetic control of infection-related development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15:678–84 [Google Scholar]
  75. Li L, Xue C, Bruno K, Nishimura M, Xu JR. 75.  2004. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol. Plant-Microbe Interact. 17:547–56 [Google Scholar]
  76. Lin CH, Chung KR. 76.  2010. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase–mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet. Biol. 47:818–27 [Google Scholar]
  77. Liu H, Styles CA, Fink GR. 77.  1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–44 [Google Scholar]
  78. Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI. 78.  2007. Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26:690–700 [Google Scholar]
  79. Liu S, Dean RA. 79.  1997. G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:1075–86 [Google Scholar]
  80. Liu W, Zhou X, Li G, Li L, Kong L. 80.  et al. 2011. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 7:e1001261 [Google Scholar]
  81. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. 81.  2010. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–75 [Google Scholar]
  82. Mahlert M, Leveleki L, Hlubek A, Sandrock B, Bolker M. 82.  2006. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol. Microbiol. 59:567–78 [Google Scholar]
  83. Malagnac F, Lalucque H, Lepere G, Silar P. 83.  2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 41:982–97 [Google Scholar]
  84. Mayorga ME, Gold SE. 84.  1999. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34:485–97 [Google Scholar]
  85. Mehrabi R, Ding S, Xu JR. 85.  2008. MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot. Cell 7:791–99 [Google Scholar]
  86. Mehrabi R, Kema GH. 86.  2006. Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensing. Mol. Plant Pathol. 7:565–77 [Google Scholar]
  87. Mehrabi R, Van der Lee T, Waalwijk C, Gert HJ. 87.  2006. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol. Plant-Microbe Interact. 19:389–98 [Google Scholar]
  88. Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P. 88.  2002. CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Mol. Microbiol. 46:305–18 [Google Scholar]
  89. Mey G, Oeser B, Lebrun MH, Tudzynski P. 89.  2002. The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol. Plant-Microbe Interact. 15:303–12 [Google Scholar]
  90. Mielnichuk N, Sgarlata C, Perez-Martin J. 90.  2009. A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis. J. Cell Sci. 122:4130–40 [Google Scholar]
  91. Minz Dub A, Kokkelink L, Tudzynski B, Tudzynski P, Sharon A. 91.  2013. Involvement of Botrytis cinerea small GTPases BcRAS1 and BcRAC in differentiation, virulence, and the cell cycle. Eukaryot. Cell 12:1609–18 [Google Scholar]
  92. Mitchell TK, Dean RA. 92.  1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–78 [Google Scholar]
  93. Mosch HU, Kubler E, Krappmann S, Fink GR, Braus GH. 93.  1999. Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol. Biol. Cell 10:1325–35 [Google Scholar]
  94. Mosch HU, Roberts RL, Fink GR. 94.  1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5352–56 [Google Scholar]
  95. Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M. 95.  et al. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet. Biol. 42:200–12 [Google Scholar]
  96. Muller P, Aichinger C, Feldbrugge M, Kahmann R. 96.  1999. The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:1007–17 [Google Scholar]
  97. Muller P, Weinzierl G, Brachmann A, Feldbrugge M, Kahmann R. 97.  2003. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot. Cell 2:1187–99 [Google Scholar]
  98. Nadal M, Garcia-Pedrajas MD, Gold SE. 98.  2010. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes. Phytopathology 100:1364–72 [Google Scholar]
  99. Nathues E, Jorgens C, Lorenz N, Tudzynski P. 99.  2007. The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea. Mol. Plant Pathol. 8:653–65 [Google Scholar]
  100. Navarro-Velasco GY, Prados-Rosales RC, Ortiz-Urquiza A, Quesada-Moraga E, Di Pietro A. 100.  2011. Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet. Biol. 48:1124–29 [Google Scholar]
  101. Nemecek JC, Wuthrich M, Klein BS. 101.  2006. Global control of dimorphism and virulence in fungi. Science 312:583–88 [Google Scholar]
  102. Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. 102.  2012. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. USA 109:1536–41 [Google Scholar]
  103. Nishimura M, Park G, Xu JR. 103.  2003. The G-β subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol. 50:231–43 [Google Scholar]
  104. Oide S, Liu J, Yun SH, Wu D, Michev A. 104.  et al. 2010. Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryot. Cell 9:1867–80 [Google Scholar]
  105. Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MI. 105.  et al. 2004. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect. Immun. 72:1760–66 [Google Scholar]
  106. Ospina-Giraldo MD, Mullins E, Kang S. 106.  2003. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr. Genet. 44:49–57 [Google Scholar]
  107. Panwar V, McCallum B, Bakkeren G. 107.  2013. Endogenous silencing of Puccinia triticina pathogenicity genes through in planta–expressed sequences leads to the suppression of rust diseases on wheat. Plant J. 73:521–32 [Google Scholar]
  108. Park G, Bruno KS, Staiger CJ, Talbot NJ, Xu JR. 108.  2004. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Mol. Microbiol. 53:1695–707 [Google Scholar]
  109. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. 109.  2006. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–35 [Google Scholar]
  110. Park G, Xue C, Zheng L, Lam S, Xu JR. 110.  2002. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:183–92 [Google Scholar]
  111. Park SM, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH. 111.  2004. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51:1267–77 [Google Scholar]
  112. Perez-Nadales E, Di Pietro A. 112.  2011. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23:1171–85 [Google Scholar]
  113. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. 113.  1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–75 [Google Scholar]
  114. Prados Rosales RC, Di Pietro A. 114.  2008. Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot. Cell 7:162–71 [Google Scholar]
  115. Qi Z, Wang Q, Dou X, Wang W, Zhao Q. 115.  et al. 2012. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol. Plant Pathol. 13:677–89 [Google Scholar]
  116. Ramamoorthy V, Zhao X, Snyder AK, Xu JR, Shah DM. 116.  2007. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol. 9:1491–506 [Google Scholar]
  117. Ramanujam R, Naqvi NI. 117.  2010. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog. 6:e1000897 [Google Scholar]
  118. Rispail N, Di Pietro A. 118.  2009. Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol. Plant-Microbe Interact. 22:830–39 [Google Scholar]
  119. Rispail N, Di Pietro A. 119.  2010. The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum. Mol. Plant Pathol. 11:395–407 [Google Scholar]
  120. Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A. 120.  et al. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46:287–98 [Google Scholar]
  121. Robertson LS, Fink GR. 121.  1998. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95:13783–87 [Google Scholar]
  122. Roelants FM, Torrance PD, Bezman N, Thorner J. 122.  2002. Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol. Biol. Cell 13:3005–28 [Google Scholar]
  123. Rolke Y, Tudzynski P. 123.  2008. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity. Mol. Microbiol. 68:405–23 [Google Scholar]
  124. Rui O, Hahn M. 124.  2007. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol. Plant Pathol. 8:173–84 [Google Scholar]
  125. Ruiz-Roldan MC, Maier FJ, Schafer W. 125.  2001. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol. Plant-Microbe Interact. 14:116–25 [Google Scholar]
  126. Saito H. 126.  2010. Regulation of cross-talk in yeast MAPK signaling pathways. Curr. Opin. Microbiol. 13:677–83 [Google Scholar]
  127. Saito H, Posas F. 127.  2012. Response to hyperosmotic stress. Genetics 192:289–318 [Google Scholar]
  128. Salamon JA, Acuña R, Dawe AL. 128.  2010. Phosphorylation of phosducin-like protein BDM-1 by protein kinase 2 (CK2) is required for virulence and Gβ subunit stability in the fungal plant pathogen Cryphonectria parasitica. Mol. Microbiol. 76:848–60 [Google Scholar]
  129. Santarius M, Lee CH, Anderson RA. 129.  2006. Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem. J. 398:1–13 [Google Scholar]
  130. Saunders DG, Aves SJ, Talbot NJ. 130.  2010. Cell cycle–mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507 [Google Scholar]
  131. Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. 131.  2010. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol. Plant Pathol. 11:105–19 [Google Scholar]
  132. Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado IG. 132.  et al. 2008. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Mol. Plant-Microbe Interact. 21:1443–59 [Google Scholar]
  133. Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. 133.  2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211–21 [Google Scholar]
  134. Shim WB, Dunkle LD. 134.  2003. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol. Plant-Microbe Interact. 16:760–68 [Google Scholar]
  135. Smith DG, Garcia-Pedrajas MD, Hong W, Yu Z, Gold SE, Perlin MH. 135.  2004. An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot. Cell 3:180–89 [Google Scholar]
  136. Smythe E, Ayscough KR. 136.  2003. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep. 4:246–51 [Google Scholar]
  137. Stichternoth C, Fraund A, Setiadi E, Giasson L, Vecchiarelli A, Ernst JF. 137.  2011. Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot. Cell 10:502–11 [Google Scholar]
  138. Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I. 138.  2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374–83 [Google Scholar]
  139. Tong X, Zhang X, Plummer KM, Stowell KM, Sullivan PA, Farley PC. 139.  2007. GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata. Mol. Plant-Microbe Interact. 20:1102–11 [Google Scholar]
  140. Tonukari NJ, Scott-Craig JS, Walton JD. 140.  2000. The Cochliobolus carbonum SNF1 gene is required for cell wall–degrading enzyme expression and virulence on maize. Plant Cell 12:237–48 [Google Scholar]
  141. Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y. 141.  2003. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol. Plant-Microbe Interact. 16:315–25 [Google Scholar]
  142. Tzima A, Paplomatas EJ, Rauyaree P, Kang S. 142.  2010. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genet. Biol. 47:406–15 [Google Scholar]
  143. Van Thuat N, Schafer W, Bormann J. 143.  2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact. 25:1142–56 [Google Scholar]
  144. Vernay A, Schaub S, Guillas I, Bassilana M, Arkowitz RA. 144.  2012. A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth. J. Cell Biol. 198:711–30 [Google Scholar]
  145. Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P. 145.  et al. 2006. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol. Plant-Microbe Interact. 19:1042–50 [Google Scholar]
  146. Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein JM. 146.  2011. Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J. Biol. Chem. 286:22017–27 [Google Scholar]
  147. Wang C, Zhang S, Hou R, Zhao Z, Zheng Q. 147.  et al. 2011. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 7:e1002460 [Google Scholar]
  148. Wang J, Du Y, Zhang H, Zhou C, Qi Z. 148.  et al. 2013. The actin-regulating kinase homologue MoArk1 plays a pleiotropic function in Magnaporthe oryzae. Mol. Plant Pathol. 14:470–82 [Google Scholar]
  149. Wang Y, Liu TB, Patel S, Jiang L, Xue C. 149.  2011. The casein kinase I protein Cck1 regulates multiple signaling pathways and is essential for cell integrity and fungal virulence in Cryptococcus neoformans. Eukaryot. Cell 10:1455–64 [Google Scholar]
  150. Widmann C, Gibson S, Jarpe MB, Johnson GL. 150.  1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79:143–80 [Google Scholar]
  151. Wong Sak Hoi J, Herbert C, Bacha N, O'Connell R, Lafitte C. 151.  et al. 2007. Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Mol. Microbiol. 64:68–82 [Google Scholar]
  152. Xu JR, Hamer JE. 152.  1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696–706 [Google Scholar]
  153. Xu JR, Staiger CJ, Hamer JE. 153.  1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 95:12713–18 [Google Scholar]
  154. Yamauchi J, Takayanagi N, Komeda K, Takano Y, Okuno T. 154.  2004. cAMP-pKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Mol. Plant-Microbe Interact. 17:1355–65 [Google Scholar]
  155. Yan L, Yang Q, Sundin GW, Li H, Ma Z. 155.  2010. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet. Biol. 47:753–60 [Google Scholar]
  156. Yan X, Li Y, Yue X, Wang C, Que Y. 156.  et al. 2011. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 7:e1002385 [Google Scholar]
  157. Yang Q, Yan L, Gu Q, Ma Z. 157.  2012. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Appl. Microbiol. Biotechnol. 96:481–92 [Google Scholar]
  158. Yang Z, Dickman MB. 158.  1999. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic. Mol. Plant-Microbe Interact. 12:430–39 [Google Scholar]
  159. Yarden O, Plamann M, Ebbole DJ, Yanofsky C. 159.  1992. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11:2159–66 [Google Scholar]
  160. Yi M, Park JH, Ahn JH, Lee YH. 160.  2008. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 45:1172–81 [Google Scholar]
  161. Yoshimi A, Tsuda M, Tanaka C. 161.  2004. Cloning and characterization of the histidine kinase gene Dic1 from Cochliobolus heterostrophus that confers dicarboximide resistance and osmotic adaptation. Mol. Genet. Genomics 271:228–36 [Google Scholar]
  162. Zaman S, Lippman SI, Zhao X, Broach JR. 162.  2008. How Saccharomyces responds to nutrients. Annu. Rev. Genet. 42:27–81 [Google Scholar]
  163. Zhang H, Liu K, Zhang X, Song W, Zhao Q. 163.  et al. 2010. A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr. Genet. 56:517–28 [Google Scholar]
  164. Zhang H, Xue C, Kong L, Li G, Xu JR. 164.  2011. A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. Eukaryot. Cell 10:1062–70 [Google Scholar]
  165. Zhao X, Kim Y, Park G, Xu JR. 165.  2005. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–29 [Google Scholar]
  166. Zhao X, Mehrabi R, Xu JR. 166.  2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6:1701–14 [Google Scholar]
  167. Zhao X, Xu JR. 167.  2007. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Mol. Microbiol. 63:881–94 [Google Scholar]
  168. Zheng L, Campbell M, Murphy J, Lam S, Xu JR. 168.  2000. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol. Plant-Microbe Interact. 13:724–32 [Google Scholar]
  169. Zhou X, Liu W, Wang C, Xu Q, Wang Y. 169.  et al. 2011. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol. Microbiol. 80:33–53 [Google Scholar]
  170. Zhou X, Zhang H, Li G, Shaw B, Xu JR. 170.  2012. The cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathog. 8:e1002911 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-050143
Loading
/content/journals/10.1146/annurev-phyto-102313-050143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error