1932

Abstract

Visual perceptual learning (VPL) is long-term performance increase resulting from visual perceptual experience. Task-relevant VPL of a feature results from training of a task on the feature relevant to the task. Task-irrelevant VPL arises as a result of exposure to the feature irrelevant to the trained task. At least two serious problems exist. First, there is the controversy over which stage of information processing is changed in association with task-relevant VPL. Second, no model has ever explained both task-relevant and task-irrelevant VPL. Here we propose a dual plasticity model in which feature-based plasticity is a change in a representation of the learned feature, and task-based plasticity is a change in processing of the trained task. Although the two types of plasticity underlie task-relevant VPL, only feature-based plasticity underlies task-irrelevant VPL. This model provides a new comprehensive framework in which apparently contradictory results could be explained.

[Erratum, Closure]

An erratum has been published for this article:
Perceptual Learning: Toward a Comprehensive Theory
Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010814-015214
2015-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/psych/66/1/annurev-psych-010814-015214.html?itemId=/content/journals/10.1146/annurev-psych-010814-015214&mimeType=html&fmt=ahah

Literature Cited

  1. Adab HZ, Vogels R. 2011. Practicing coarse orientation discrimination improves orientation signals in macaque cortical area v4. Curr. Biol. 21:1661–66 [Google Scholar]
  2. Adini Y, Sagi D, Tsodyks M. 2002. Context-enabled learning in the human visual system. Nature 415:790–93 [Google Scholar]
  3. Ahissar M, Hochstein S. 1993. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90:5718–22 [Google Scholar]
  4. Ahissar M, Hochstein S. 1997. Task difficulty and the specificity of perceptual learning. Nature 387:401–6 [Google Scholar]
  5. Andersen GJ. 2012. Aging and vision: changes in function and performance from optics to perception. Wiley Interdiscip. Rev. Cogn. Sci. 3:403–10 [Google Scholar]
  6. Andersen GJ, Ni R, Bower JD, Watanabe T. 2010. Perceptual learning, aging, and improved visual performance in early stages of visual processing. J. Vis. 10:4–11 [Google Scholar]
  7. Ashby FG, Maddox WT. 2011. Human category learning 2.0. Ann. N. Y. Acad. Sci.1224147–61
  8. Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M. 2012. Individual variability in functional connectivity predicts performance of a perceptual task. Proc. Natl. Acad. Sci. USA 109:3516–21 [Google Scholar]
  9. Ball K, Sekuler R. 1987. Direction-specific improvement in motion discrimination. Vis. Res. 27:953–65 [Google Scholar]
  10. Barbot A, Landy MS, Carrasco M. 2011. Exogenous attention enhances 2nd-order contrast sensitivity. Vis. Res. 51:1086–98 [Google Scholar]
  11. Baumann O, Endestad T, Magnussen S, Greenlee MW. 2008. Delayed discrimination of spatial frequency for gratings of different orientation: behavioral and fMRI evidence for low-level perceptual memory stores in early visual cortex. Exp. Brain Res. 188:363–69 [Google Scholar]
  12. Bejjanki VR, Beck JM, Lu ZL, Pouget A. 2011. Perceptual learning as improved probabilistic inference in early sensory areas. Nat. Neurosci. 14:642–48 [Google Scholar]
  13. Bennett PJ, Sekuler AB, McIntosh AR, Della-Maggiore V. 2001. The effects of aging on visual memory: evidence for functional reorganization of cortical networks. Acta Psychol. (Amst.) 107:249–73 [Google Scholar]
  14. Beste C, Dinse HR. 2013. Learning without training. Curr. Biol. 23:R489–99 [Google Scholar]
  15. Beste C, Wascher E, Gunturkun O, Dinse HR. 2011. Improvement and impairment of visually guided behavior through LTP- and LTD-like exposure-based visual learning. Curr. Biol. 21:876–82 [Google Scholar]
  16. Bi T, Chen J, Zhou T, He Y, Fang F. 2014. Function and structure of human left fusiform cortex are closely associated with perceptual learning of faces. Curr. Biol. 24:222–27 [Google Scholar]
  17. Bouvier SE, Cardinal KS, Engel SA. 2008. Activity in visual area V4 correlates with surface perception. J. Vis. 8:281–9 [Google Scholar]
  18. Bower JD, Watanabe T, Andersen GJ. 2013. Perceptual learning and aging: improved performance for low-contrast motion discrimination. Front. Psychol. 4:66 [Google Scholar]
  19. Braddick OJ, O'Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R. 2001. Brain areas sensitive to coherent visual motion. Perception 30:61–72 [Google Scholar]
  20. Carrasco M, Rosenbaum A, Giordano A. 2008. Exogenous attention: less effort, more learning. ! J. Vis. 8:1095a [Google Scholar]
  21. Choi H, Watanabe T. 2012. Is perceptual learning associated with changes in a sensory region?. F1000 Biol. Rep. 4:B4–24 [Google Scholar]
  22. Chowdhury SA, DeAngelis GC. 2008. Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 60:367–77 [Google Scholar]
  23. Crist RE, Kapadia MK, Westheimer G, Gilbert CD. 1997. Perceptual learning of spatial localization: specificity for orientation, position, and context. J. Neurophysiol. 78:2889–94 [Google Scholar]
  24. Crist RE, Li W, Gilbert CD. 2001. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4:519–25 [Google Scholar]
  25. de Villers-Sidani E, Merzenich MM. 2011. Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog. Brain Res. 191:119–31 [Google Scholar]
  26. Deloss DJ, Watanabe T, Andersen GJ. 2014. Optimization of perceptual learning: effects of task difficulty and external noise in older adults. Vis. Res. 99:37–45 [Google Scholar]
  27. Dewald AD, Sinnett S, Doumas LA. 2011. Conditions of directed attention inhibit recognition performance for explicitly presented target-aligned irrelevant stimuli. Acta Psychol. (Amst.) 138:60–67 [Google Scholar]
  28. Dewald AD, Sinnett S, Doumas LA. 2013. A window of perception when diverting attention? Enhancing recognition for explicitly presented, unattended, and irrelevant stimuli by target alignment. J. Exp. Psychol.: Hum. Percept. Perform. 39:1304–12 [Google Scholar]
  29. Dill M, Fahle M. 1997. The role of visual field position in pattern-discrimination learning. Proc. R. Soc. B 264:1031–36 [Google Scholar]
  30. Dosher BA, Jeter P, Liu J, Lu ZL. 2013. An integrated reweighting theory of perceptual learning. Proc. Natl. Acad. Sci. USA 110:13678–83 [Google Scholar]
  31. Dosher BA, Liu SH, Blair N, Lu ZL. 2004. The spatial window of the perceptual template and endogenous attention. Vis. Res. 44:1257–71 [Google Scholar]
  32. Dosher BA, Lu ZL. 1998. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. USA 95:13988–93 [Google Scholar]
  33. Dosher BA, Lu ZL. 1999. Mechanisms of perceptual learning. Vis. Res. 39:3197–221 [Google Scholar]
  34. Eagleman D. 2011. Incognito: The Secret Lives of the Brain New York: Pantheon
  35. Fahle M. 2002. Perceptual learning: gain without pain?. Nat. Neurosci. 5:923–24 [Google Scholar]
  36. Fahle M. 2009. Perceptual learning and sensomotor flexibility: cortical plasticity under attentional control?. Philos. Trans. R. Soc. B 364:313–19 [Google Scholar]
  37. Fahle M, Edelman S. 1993. Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vis. Res. 33:397–412 [Google Scholar]
  38. Fahle M, Edelman S, Poggio T. 1995. Fast perceptual learning in hyperacuity. Vis. Res. 35:3003–13 [Google Scholar]
  39. Fahle M, Poggio T. 2002. Perceptual Learning Cambridge, MA: MIT Press
  40. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47 [Google Scholar]
  41. Fine I, Jacobs RA. 2002. Comparing perceptual learning tasks: a review. J. Vis. 2:190–203 [Google Scholar]
  42. Fiorentini A, Berardi N. 1980. Perceptual learning specific for orientation and spatial frequency. Nature 287:43–44 [Google Scholar]
  43. Folstein JR, Gauthier I, Palmeri TJ. 2010. Mere exposure alters category learning of novel objects. Front. Psychol. 1:40 [Google Scholar]
  44. Furmanski CS, Schluppeck D, Engel SA. 2004. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14:573–78 [Google Scholar]
  45. Garrigan P, Kellman PJ. 2008. Perceptual learning depends on perceptual constancy. Proc. Natl. Acad. Sci. USA 105:2248–53 [Google Scholar]
  46. Ghose GM, Yang T, Maunsell JH. 2002. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87:1867–88 [Google Scholar]
  47. Gilbert CD. 1994. Early perceptual learning. Proc. Natl. Acad. Sci. USA 91:1195–97 [Google Scholar]
  48. Gilbert CD, Li W. 2012. Adult visual cortical plasticity. Neuron 75:250–64 [Google Scholar]
  49. Gold JI, Law CT, Connolly P, Bennur S. 2008. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J. Neurophysiol. 100:2653–68 [Google Scholar]
  50. Gold JI, Law CT, Connolly P, Bennur S. 2009. Relationships between the threshold and slope of psychometric and neurometric functions during perceptual learning: implications for neuronal pooling. J. Neurophysiol. 103:140–54 [Google Scholar]
  51. Gold JI, Watanabe T. 2010. Perceptual learning. Curr. Biol. 20:R46–48 [Google Scholar]
  52. Goldstone RL. 1998. Perceptual learning. Annu. Rev. Psychol. 49:585–612 [Google Scholar]
  53. Gu Y, Liu S, Fetsch CR, Yang Y, Fok S. et al. 2012. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71:750–61 [Google Scholar]
  54. Gutnisky DA, Hansen BJ, Iliescu BF, Dragoi V. 2009. Attention alters visual plasticity during exposure-based learning. Curr. Biol. 19:555–60 [Google Scholar]
  55. Hammer R, Sloutsky V, Grill-Spector K. 2012. The interplay between feature-saliency and feedback information in visual category learning tasks. Proc. 34th annu. meet. Cogn. Sci. Soc. N Miyake, D Peebles, RP Cooper 420–25 Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  56. Harris H, Gliksberg M, Sagi D. 2012. Generalized perceptual learning in the absence of sensory adaptation. Curr. Biol. 22:1813–17 [Google Scholar]
  57. Harris JP, Fahle M. 1995. The detection and discrimination of spatial offsets. Vis. Res. 35:51–58 [Google Scholar]
  58. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431:859–62 [Google Scholar]
  59. Hensch TK. 2005a. Critical period mechanisms in developing visual cortex. Curr. Top. Dev. Biol. 69:215–37 [Google Scholar]
  60. Hensch TK. 2005b. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6:877–88 [Google Scholar]
  61. Hochstein S, Ahissar M. 2002. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804 [Google Scholar]
  62. Hua T, Bao P, Huang CB, Wang Z, Xu J. et al. 2010. Perceptual learning improves contrast sensitivity of V1 neurons in cats. Curr. Biol. 20:887–94 [Google Scholar]
  63. Huang X, Lu H, Tjan BS, Zhou Y, Liu Z. 2007. Motion perceptual learning: when only task-relevant information is learned. J. Vis. 7:141–10 [Google Scholar]
  64. Hubel DH, Wiesel TN. 1964. Effects of monocular deprivation in kittens. Naunyn-Schmiedebergs Arch. Pharmacol. 248:492–97 [Google Scholar]
  65. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 [Google Scholar]
  66. Jain A, Zaidi Q. 2011. Discerning nonrigid 3D shapes from motion cues. Proc. Natl. Acad. Sci. USA 108:1663–68 [Google Scholar]
  67. Kahnt T, Grueschow M, Speck O, Haynes JD. 2011. Perceptual learning and decision-making in human medial frontal cortex. Neuron 70:549–59 [Google Scholar]
  68. Kamitani Y, Tong F. 2005. Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8:679–85 [Google Scholar]
  69. Karmarkar UR, Dan Y. 2006. Experience-dependent plasticity in adult visual cortex. Neuron 52:577–85 [Google Scholar]
  70. Karni A, Sagi D. 1991. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88:4966–70 [Google Scholar]
  71. Karni A, Sagi D. 1993. The time course of learning a visual skill. Nature 365:250–52 [Google Scholar]
  72. Koyama S, Harner A, Watanabe T. 2004. Task-dependent changes of the psychophysical motion-tuning functions in the course of perceptual learning. Perception 33:1139–47 [Google Scholar]
  73. Koyama S, Sasaki Y, Andersen GJ, Tootell RB, Matsuura M, Watanabe T. 2005. Separate processing of different global-motion structures in visual cortex is revealed by fMRI. Curr. Biol. 15:2027–32 [Google Scholar]
  74. Law CT, Gold JI. 2008. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat. Neurosci. 11:505–13 [Google Scholar]
  75. Leclercq V, Le Dantec CC, Seitz AR. 2014. Encoding of episodic information through fast task-irrelevant perceptual learning. Vis. Res. 99:5–11 [Google Scholar]
  76. Leclercq V, Seitz AR. 2012. The impact of orienting attention in fast task-irrelevant perceptual learning. Atten. Percept. Psychophys. 74:648–60 [Google Scholar]
  77. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG. et al. 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–83 [Google Scholar]
  78. Levi DM. 2012. Prentice Award Lecture 2011: removing the brakes on plasticity in the amblyopic brain. Optom. Vis. Sci. 89:827–38 [Google Scholar]
  79. Levi DM, Li RW. 2009a. Improving the performance of the amblyopic visual system. Philos. Trans. R. Soc. B 364:399–407 [Google Scholar]
  80. Levi DM, Li RW. 2009b. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vis. Res. 49:2535–49 [Google Scholar]
  81. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. 2009. Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. USA 106:17558–63 [Google Scholar]
  82. Li J, Thompson B, Deng D, Chan LY, Yu M, Hess RF. 2013. Dichoptic training enables the adult amblyopic brain to learn. Curr. Biol. 23:R308–9 [Google Scholar]
  83. Li N, DiCarlo JJ. 2008. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321:1502–7 [Google Scholar]
  84. Li N, DiCarlo JJ. 2012. Neuronal learning of invariant object representation in the ventral visual stream is not dependent on reward. J. Neurosci. 32:6611–20 [Google Scholar]
  85. Liu J, Lu ZL, Dosher BA. 2010. Augmented Hebbian reweighting: interactions between feedback and training accuracy in perceptual learning. J. Vis. 10:29 [Google Scholar]
  86. Liu Z. 1999. Perceptual learning in motion discrimination that generalizes across motion directions. Proc. Natl. Acad. Sci. USA 96:14085–87 [Google Scholar]
  87. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–57 [Google Scholar]
  88. Lu ZL, Chu W, Dosher BA, Lee S. 2005. Independent perceptual learning in monocular and binocular motion systems. Proc. Natl. Acad. Sci. USA 102:5624–29 [Google Scholar]
  89. Lu ZL, Hua T, Huang CB, Zhou Y, Dosher BA. 2011. Visual perceptual learning. Neurobiol. Learn. Mem. 95:145–51 [Google Scholar]
  90. McKee SP, Westheimer G. 1978. Improvement in vernier acuity with practice. Percept. Psychophys. 24:258–62 [Google Scholar]
  91. Morishita H, Hensch TK. 2008. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18:101–7 [Google Scholar]
  92. Movshon J, Adelson E, Gizzi M, Newsome W. 1985. The analysis of moving visual patterns. Pattern Recognit. Mech. 54:117–51 [Google Scholar]
  93. Newsome WT, Pare EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:2201–11 [Google Scholar]
  94. Ooi TL, Su YR, Natale DM, He ZJ. 2013. A push-pull treatment for strengthening the “lazy eye” in amblyopia. Curr. Biol. 23:R309–10 [Google Scholar]
  95. Op de Beeck HP, Baker CI. 2010. The neural basis of visual object learning. Trends Cogn. Sci. 14:22–30 [Google Scholar]
  96. Petrov AA, Dosher BA, Lu ZL. 2005. The dynamics of perceptual learning: an incremental reweighting model. Psychol. Rev. 112:715–43 [Google Scholar]
  97. Petrov AA, Dosher BA, Lu ZL. 2006. Perceptual learning without feedback in non-stationary contexts: data and model. Vis. Res. 46:3177–97 [Google Scholar]
  98. Piech V, Li W, Reeke GN, Gilbert CD. 2013. Network model of top-down influences on local gain and contextual interactions in visual cortex. Proc. Natl. Acad. Sci. USA 110:E4108–17 [Google Scholar]
  99. Poggio T, Fahle M, Edelman S. 1992. Fast perceptual learning in visual hyperacuity. Science 256:1018–21 [Google Scholar]
  100. Polat U, Ma-Naim T, Belkin M, Sagi D. 2004. Improving vision in adult amblyopia by perceptual learning. Proc. Natl. Acad. Sci. USA 101:6692–97 [Google Scholar]
  101. Reed A, Riley J, Carraway R, Carrasco A, Perez C. et al. 2011. Cortical map plasticity improves learning but is not necessary for improved performance. Neuron 70:121–31 [Google Scholar]
  102. Rees G, Friston K, Koch C. 2000. A direct quantitative relationship between the functional properties of human and macaque V5. Nat. Neurosci. 3:716–23 [Google Scholar]
  103. Roe AW, Ts'o DY. 1995. Visual topography in primate V2: multiple representation across functional stripes. J. Neurosci. 15:3689–715 [Google Scholar]
  104. Rosenthal O, Humphreys GW. 2010. Perceptual organization without perception. The subliminal learning of global contour. Psychol. Sci. 21:1751–58 [Google Scholar]
  105. Saarinen J, Levi DM. 1995. Perceptual learning in vernier acuity: What is learned?. Vis. Res. 35:519–27 [Google Scholar]
  106. Sagi D. 2011. Perceptual learning in vision research. Vis. Res. 51:1552–66 [Google Scholar]
  107. Sagi D, Tanne D. 1994. Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4:195–99 [Google Scholar]
  108. Sasaki S, Watanabe T. 2012. Perceptual learning. Visual Neurosciences J Werner, L Chalupa 991–1000 Cambridge, MA: MIT Press [Google Scholar]
  109. Sasaki Y, Nanez JE, Watanabe T. 2010. Advances in visual perceptual learning and plasticity. Nat. Rev. Neurosci. 11:53–60 [Google Scholar]
  110. Schoups A, Vogels R, Qian N, Orban G. 2001. Practising orientation identification improves orientation coding in V1 neurons. Nature 412:549–53 [Google Scholar]
  111. Schoups AA, Orban GA. 1996. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc. Natl. Acad. Sci. USA 93:7358–62 [Google Scholar]
  112. Schoups AA, Vogels R, Orban GA. 1995. Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J. Physiol. 483:Part 3797–810 [Google Scholar]
  113. Schwartz S, Maquet P, Frith C. 2002. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc. Natl. Acad. Sci. USA 99:17137–42 [Google Scholar]
  114. Seitz A, Kim D, Watanabe T. 2009. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61:700–7 [Google Scholar]
  115. Seitz A, Watanabe T. 2005. A unified model for perceptual learning. Trends Cogn. Sci. 9:329–34 [Google Scholar]
  116. Seitz AR, Dinse HR. 2007. A common framework for perceptual learning. Curr. Opin. Neurobiol. 17:148–53 [Google Scholar]
  117. Seitz AR, Lefebvre C, Watanabe T, Jolicoeur P. 2005a. Requirement for high-level processing in subliminal learning. Curr. Biol. 15:R753–55 [Google Scholar]
  118. Seitz AR, Watanabe T. 2003. Psychophysics: Is subliminal learning really passive?. Nature 422:36 [Google Scholar]
  119. Seitz AR, Yamagishi N, Werner B, Goda N, Kawato M, Watanabe T. 2005b. Task-specific disruption of perceptual learning. Proc. Natl. Acad. Sci. USA 102:14895–900 [Google Scholar]
  120. Shadlen MN, Newsome WT. 1996. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93:628–33 [Google Scholar]
  121. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:1916–36 [Google Scholar]
  122. Shibata K, Chang LH, Kim D, Nanez JE Sr, Kamitani Y. et al. 2012a. Decoding reveals plasticity in V3A as a result of motion perceptual learning. PLOS ONE 7:e44003 [Google Scholar]
  123. Shibata K, Kawato M, Sasaki S, Watanabe T. 2012b. Monocular deprivation boosts long-term visual plasticity. Curr. Biol. 22:R291–92 [Google Scholar]
  124. Shibata K, Sasaki Y, Kawato M, Watanabe T. 2013. Perceptual learning is associated with different types of plasticity. J. Vis. 13:604 [Google Scholar]
  125. Shibata K, Watanabe T. 2012. Preference suppression caused by misattribution of task-irrelevant subliminal motion. Proc. R. Soc. B 279:3443–48 [Google Scholar]
  126. Shibata K, Watanabe T, Sasaki Y, Kawato M. 2011. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334:1413–15 [Google Scholar]
  127. Shiu LP, Pashler H. 1992. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52:582–88 [Google Scholar]
  128. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK. et al. 1997. Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 17:7060–78 [Google Scholar]
  129. Ts'o DY, Gilbert CD. 1988. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8:1712–27 [Google Scholar]
  130. Tsushima Y, Sasaki Y, Watanabe T. 2006. Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science 314:1786–88 [Google Scholar]
  131. Tsushima Y, Seitz A, Watanabe T. 2008. Task-irrelevant learning occurs only when the irrelevant feature is weak. Curr. Biol. 18:R516–17 [Google Scholar]
  132. Tsushima Y, Watanabe T. 2009. Roles of attention in perceptual learning from perspectives of psychophysics and animal learning. Learn. Behav. 37:126–32 [Google Scholar]
  133. Vaina LM, Belliveau JW, des Roziers EB, Zeffiro TA. 1998. Neural systems underlying learning and representation of global motion. Proc. Natl. Acad. Sci. USA 95:12657–62 [Google Scholar]
  134. Vlahou EL, Protopapas A, Seitz AR. 2012. Implicit training of nonnative speech stimuli. J. Exp. Psychol.: Gen. 141:363–81 [Google Scholar]
  135. Walker MP, Stickgold R, Alsop D, Gaab N, Schlaug G. 2005. Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133:911–17 [Google Scholar]
  136. Wang R, Zhang JY, Klein SA, Levi DM, Yu C. 2012. Task relevancy and demand modulate double-training enabled transfer of perceptual learning. Vis. Res. 61:33–38 [Google Scholar]
  137. Watamaniuk SN, Sekuler R, Williams DW. 1989. Direction perception in complex dynamic displays: the integration of direction information. Vis. Res. 29:47–59 [Google Scholar]
  138. Watanabe T, Nanez JE, Sasaki Y. 2001. Perceptual learning without perception. Nature 413:844–48 [Google Scholar]
  139. Watanabe T, Nanez JE Sr, Koyama S, Mukai I, Liederman J, Sasaki Y. 2002. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat. Neurosci. 5:1003–9 [Google Scholar]
  140. Westheimer G, Crist RE, Gorski L, Gilbert CD. 2001. Configuration specificity in bisection acuity. Vis. Res. 41:1133–38 [Google Scholar]
  141. Witthoft N, Davidenko N, Grill-Spector K. 2009. Exemplar frequency affects unsupervised learning of shapes. Proc. 31st annu. meet. Cogn. Sci. Soc. N Taatgen, H van Rijn 3058–63 Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  142. Xiao LQ, Zhang JY, Wang R, Klein SA, Levi DM, Yu C. 2008. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18:1922–26 [Google Scholar]
  143. Xu JP, He ZJ, Ooi TL. 2010. Effectively reducing sensory eye dominance with a push-pull perceptual learning protocol. Curr. Biol. 20:1864–68 [Google Scholar]
  144. Xu JP, He ZJ, Ooi TL. 2012a. Further support for the importance of the suppressive signal (pull) during the push-pull perceptual training. Vis. Res. 61:60–69 [Google Scholar]
  145. Xu JP, He ZJ, Ooi TL. 2012b. Perceptual learning to reduce sensory eye dominance beyond the focus of top-down visual attention. Vis. Res. 61:39–47 [Google Scholar]
  146. Xu JP, He ZJ, Ooi TL. 2012c. Push-pull training reduces foveal sensory eye dominance within the early visual channels. Vis. Res. 61:48–59 [Google Scholar]
  147. Yang T, Maunsell JH. 2004. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24:1617–26 [Google Scholar]
  148. Yotsumoto Y, Sasaki Y, Chan P, Vasios C, Bonmassar G. et al. 2009. Location-specific cortical activation changes during sleep after training for perceptual learning. Curr. Biol. 19:1278–82 [Google Scholar]
  149. Yotsumoto Y, Watanabe T, Sasaki Y. 2008. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57:827–33 [Google Scholar]
  150. Young KG, Li RW, Levi DM, Klein SA, Huang EY. 2004. Interocular transfer in perceptual learning of a vernier task. Investig. Ophthalmol. Vis. Sci. 4363:B824 [Google Scholar]
  151. Zeki S. 1993. A Vision of the Brain Oxford, UK: Blackwell Sci.
  152. Zhang J, Kourtzi Z. 2010. Learning-dependent plasticity with and without training in the human brain. Proc. Natl. Acad. Sci. USA 107:13503–8 [Google Scholar]
  153. Zhang JY, Kuai SG, Xiao LQ, Klein SA, Levi DM, Yu C. 2008. Stimulus coding rules for perceptual learning. PLOS Biol. 6:e197 [Google Scholar]
  154. Zhang JY, Zhang GL, Xiao LQ, Klein SA, Levi DM, Yu C. 2010a. Rule-based learning explains visual perceptual learning and its specificity and transfer. J. Neurosci. 30:12323–28 [Google Scholar]
  155. Zhang T, Xiao LQ, Klein SA, Levi DM, Yu C. 2010b. Decoupling location specificity from perceptual learning of orientation discrimination. Vis. Res. 50:368–74 [Google Scholar]
/content/journals/10.1146/annurev-psych-010814-015214
Loading
/content/journals/10.1146/annurev-psych-010814-015214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error