1932

Abstract

Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 10

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 3

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 1

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 4

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 5

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 2

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 9

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 6

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 8

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections: Video 7

Associated Article

There are media items related to this article:
Three-Dimensional Imaging of Viral Infections
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085351
2014-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085351.html?itemId=/content/journals/10.1146/annurev-virology-031413-085351&mimeType=html&fmt=ahah

Literature Cited

  1. Studer D, Humbel BM, Chiquet M. 1.  2008. Electron microscopy of high-pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem. Cell Biol. 130:877–89 [Google Scholar]
  2. Hurbain I, Sachse M. 2.  2011. The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol. Cell 103:405–20 [Google Scholar]
  3. Lučić V, Förster F, Baumeister W. 3.  2005. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–65 [Google Scholar]
  4. Holmes KV. 4.  1975. Scanning electron microscopic studies of virus-infected cells. I. Cytopathic effects and maturation of vesicular stomatitis virus in L2 cells. J. Virol. 15:355–62 [Google Scholar]
  5. Gonda MA, Gilden RV, Hsu KC. 5.  1979. An unlabeled antibody macromolecule technique using hemocyanin for the identification of type B and type C retrovirus envelope and cell surface antigens by correlative fluorescence, transmission electron, and scanning electron microscopy. J. Histochem. Cytochem. 27:1445–54 [Google Scholar]
  6. Szajner P, Weisberg AS, Lebowitz J, Heuser J, Moss B. 6.  2005. External scaffold of spherical immature poxvirus particles is made of protein trimers, forming a honeycomb lattice. J. Cell Biol. 170:971–81 [Google Scholar]
  7. Zauberman N, Mutsafi Y, Ben Halevy D, Shimoni E, Klein E. 7.  et al. 2008. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS Biol. 6:e114 [Google Scholar]
  8. Wild P, Senn C, Manera CL, Sutter E, Schraner EM. 8.  et al. 2009. Exploring the nuclear envelope of herpes simplex virus 1-infected cells by high-resolution microscopy. J. Virol. 83:408–19 [Google Scholar]
  9. Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM. 9.  et al. 2003. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–98 [Google Scholar]
  10. Cyrklaff M, Risco C, Fernández JJ, Jiménez MV, Estéban M. 10.  et al. 2005. Cryo-electron tomography of vaccinia virus. Proc. Natl. Acad. Sci. USA 102:2772–77 [Google Scholar]
  11. Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P. 11.  2007. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol. 5:e220 [Google Scholar]
  12. Iwasaki K, Omura T. 12.  2010. Electron tomography of the supramolecular structure of virus-infected cells. Curr. Opin. Struct. Biol. 20:632–39 [Google Scholar]
  13. Fu C-Y, Johnson JE. 13.  2011. Viral life cycles captured in three-dimensions with electron microscopy tomography. Curr. Opin. Virol. 1:125–33 [Google Scholar]
  14. Earl LA, Lifson JD, Subramaniam S. 14.  2013. Catching HIV ‘in the act’ with 3D electron microscopy. Trends Microbiol. 21:397–404 [Google Scholar]
  15. Fernández de Castro I, Volonté L, Risco C. 15.  2013. Virus factories: biogenesis and structural design. Cell. Microbiol. 15:24–34 [Google Scholar]
  16. Paul D, Bartenschlager R. 16.  2013. Architecture and biogenesis of plus-strand RNA virus replication factories. World J. Virol. 2:32–48 [Google Scholar]
  17. Heymann JAW, Shi D, Kim S, Bliss D, Milne JLS, Subramaniam S. 17.  2009. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J. Struct. Biol. 166:1–7 [Google Scholar]
  18. Murphy GE, Narayan K, Lowekamp BC, Hartnell LM, Heymann JAW. 18.  et al. 2011. Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J. Struct. Biol. 176:268–78 [Google Scholar]
  19. Narayan K, Danielson CM, Lagarec K, Lowekamp BC, Coffman P. 19.  et al. 2014. Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J. Struct. Biol. 185:278–84 [Google Scholar]
  20. Mercer J, Helenius A. 20.  2008. Vaccinia virus uses macropinocytosis to enter host cells. Science 320:531–35 [Google Scholar]
  21. Mercer J, Helenius A. 21.  2009. Virus entry by macropinocytosis. Nat. Cell Biol. 11:510–20 [Google Scholar]
  22. Cyrklaff M, Linaroudis A, Boicu M, Chlanda P, Baumeister W. 22.  et al. 2007. Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS ONE 2:e420 [Google Scholar]
  23. Peng L, Ryazantsev S, Sun R, Zhou ZH. 23.  2010. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18:47–58 [Google Scholar]
  24. Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW. 24.  et al. 2007. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog. 3:e63 [Google Scholar]
  25. Kuhmann SE, Platt EJ, Kozak SL, Kabat D. 25.  2000. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 74:7005–15 [Google Scholar]
  26. Maurer UE, Sodeik B, Grünewald K. 26.  2008. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc. Natl. Acad. Sci. USA 105:10559–64 [Google Scholar]
  27. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. 27.  2005. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97:147–72 [Google Scholar]
  28. Netherton CL, Wileman T. 28.  2011. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr. Opin. Virol. 1:381–87 [Google Scholar]
  29. Wileman T. 29.  2007. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?. Annu. Rev. Microbiol. 61:149–67 [Google Scholar]
  30. Fontana J, López-Iglesias C, Tzeng WP, Frey TK, Fernández JJ, Risco C. 30.  2010. Three-dimensional structure of Rubella virus factories. Virology 405:579–91 [Google Scholar]
  31. Wei T, Miyazaki N, Uehara-Ichiki T, Hibino H, Shimizu T. 31.  et al. 2011. Three-dimensional analysis of the association of viral particles with mitochondria during replication of Rice gall dwarf virus. J. Mol. Biol. 410:436–46 [Google Scholar]
  32. Fontana J, López-Montero N, Elliott RM, Fernández JJ, Risco C. 32.  2008. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell. Microbiol. 10:2012–28 [Google Scholar]
  33. Ferraris P, Beaumont E, Uzbekov R, Brand D, Gaillard J. 33.  et al. 2013. Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection. Cell. Mol. Life Sci. 70:1297–306 [Google Scholar]
  34. Risco C, Fernández de Castro I. 34.  2013. Virus morphogenesis in the cell: methods and observations. Structure and Physics of Viruses: An Integrated Textbook MG Mateu 417–40 Dordrecht: Springer SBM [Google Scholar]
  35. Fernández de Castro I, Zamora PF, Ooms L, Fernández JJ, Lai CM-H. 35.  et al. 2014. Reovirus forms neo-organelles for progeny particle assembly within reorganized cell membranes. mBio 5:e00931–13 [Google Scholar]
  36. Hoenger A, McIntosh JR. 36.  2008. Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21:89–96 [Google Scholar]
  37. Lučić V, Rigort A, Baumeister W. 37.  2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407–19 [Google Scholar]
  38. Briggs JAG. 38.  2013. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23:261–67 [Google Scholar]
  39. Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R. 39.  et al. 2013. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog. 8:e1002630 [Google Scholar]
  40. Bernardi R, Pandolfi PP. 40.  2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8:1006–16 [Google Scholar]
  41. Simon DN, Wilson KL. 41.  2011. The nucleoskeleton as a genome-associated dynamic “network of networks.”. Nat. Rev. Mol. Cell Biol. 12:695–708 [Google Scholar]
  42. López-Iglesias C, Puvion-Dutilleul F. 42.  1988. Ultrastructural localization of glycoproteins in rabbit fibroblasts altered by herpes simplex virus type 1 infection. Biol. Cell 62:47–56 [Google Scholar]
  43. Mettenleiter TC, Klupp BG, Granzow H. 43.  2006. Herpesvirus assembly: a tale of two membranes. Curr. Opin. Microbiol. 9:423–29 [Google Scholar]
  44. Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC. 44.  2007. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc. Natl. Acad. Sci. USA 104:7241–46 [Google Scholar]
  45. Miller S, Krijnse-Locker J. 45.  2008. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6:363–74 [Google Scholar]
  46. den Boon JA, Ahlquist P. 46.  2010. Organelle-like membrane compartmentalization of positive-strand virus replication factories. Annu. Rev. Microbiol. 64:241–56 [Google Scholar]
  47. Frolova EI, Gorchakov R, Pereboeva L, Atasheva S, Frolov I. 47.  2010. Functional Sindbis virus replicative complexes are formed at the plasma membrane. J. Virol. 84:11679–95 [Google Scholar]
  48. Spuul P, Balistreri G, Kääriäinen L, Ahola T. 48.  2010. Phosphatidylinositol 3-kinase-, actin-, and microtubule-dependent transport of Semliki Forest virus replication complexes from the plasma membrane to modified lysosomes. J. Virol. 84:7543–57 [Google Scholar]
  49. Risco C, Sanmartín-Conesa E, Tzeng WP, Frey TK, Seybold V, de Groot RJ. 49.  2012. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20:759–66 [Google Scholar]
  50. Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriänien L. 50.  2001. Biogenesis of the Semliki Forest virus RNA replication complex. J. Virol. 75:3873–84 [Google Scholar]
  51. Prod'homme D, Le Panse S, Grugeon G, Jupin I. 51.  2001. Detection and subcellular localization of the Turnip yellow mosaic virus 66K replication protein in infected cells. Virology 281:88–101 [Google Scholar]
  52. Nagy PD, Pogany J. 52.  2011. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 10:137–48 [Google Scholar]
  53. Barajas D, Jiang Y, Nagy PD. 53.  2009. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathog. 5:e1000705 [Google Scholar]
  54. Diaz A, Wang X, Alhquist P. 54.  2010. Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc. Natl. Acad. Sci. USA 107:16291–96 [Google Scholar]
  55. Liu ST, Sharon-Friling R, Ivanova P, Milne SB, Myers DS. 55.  et al. 2011. Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc. Natl. Acad. Sci. USA 108:12869–74 [Google Scholar]
  56. Nagy PD, Barajas D, Pogany J. 56.  2012. Host factors with regulatory roles in tombusvirus replication. Curr. Opin. Virol. 2:691–98 [Google Scholar]
  57. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 57.  2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84:10438–47 [Google Scholar]
  58. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CKE. 58.  et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 6:81–90 [Google Scholar]
  59. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y. 59.  et al. 2008. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6:e226 [Google Scholar]
  60. Limpens RWAL, van der Schaar HM, Kumar D, Koster AJ, Snijder EJ. 60.  et al. 2011. The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments. mBio 2:e00166–11 [Google Scholar]
  61. Knoops K, Bárcena M, Limpens RW, Koster AJ, Mommaas AM, Snijder EJ. 61.  2012. Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J. Virol. 86:2474–87 [Google Scholar]
  62. Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E. 62.  2012. Complex dynamic development of poliovirus membranous replication complexes. J. Virol. 86:302–12 [Google Scholar]
  63. Romero-Brey I, Merz A, Chiramel A, Lee J-Y, Chlanda P. 63.  et al. 2012. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 8:e1003056 [Google Scholar]
  64. Griffiths G, Roos N, Schleich S, Locker JK. 64.  2001. Structure and assembly of intracellular mature vaccinia virus: thin-section analysis. J. Virol. 75:11056–70 [Google Scholar]
  65. Risco C, Rodríguez JR, López-Iglesias C, Carrascosa JL, Esteban M, Rodríguez D. 65.  2002. Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J. Virol. 76:1839–55 [Google Scholar]
  66. Pais-Correia A-M, Sachse M, Guadagnini S, Robbiati V, Lasserre R. 66.  et al. 2010. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16:83–89 [Google Scholar]
  67. Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J. 67.  et al. 2013. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J. Virol. 87:6469–81 [Google Scholar]
  68. Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JAG. 68.  2011. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192:111–19 [Google Scholar]
  69. McDonald KL. 69.  2007. Cryopreparation methods for electron microscopy of selected model systems. Methods Cell Biol. 79:23–56 [Google Scholar]
  70. Sosinsky GE, Crum J, Jones YZ, Lanman J, Smarr B. 70.  et al. 2008. The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. J. Struct. Biol. 161:359–71 [Google Scholar]
  71. Mercogliano CP, DeRosier DJ. 71.  2007. Concatenated metallothionein as a clonable gold label for electron microscopy. J. Struct. Biol. 160:70–82 [Google Scholar]
  72. Diestra E, Fontana J, Guichard P, Marco S, Risco C. 72.  2009. Visualization of proteins in intact cells with a clonable tag for electron microscopy. J. Struct. Biol. 165:157–68 [Google Scholar]
  73. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB. 73.  et al. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues and organisms. PLoS Biol. 9:e1001041 [Google Scholar]
  74. Bouchet-Marquis C, Pagratis M, Kirmse R, Hoenger A. 74.  2012. Metallothionein as a clonable high-density marker for cryo-electron microscopy. J. Struct. Biol. 177:119–27 [Google Scholar]
  75. Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK. 75.  et al. 2012. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30:1143–48 [Google Scholar]
  76. Barajas D, Martín I, Pogany J, Risco C, Nagy PD. 76.  2014. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLoS Pathog 10:e1004087 [Google Scholar]
  77. Fernández JJ. 77.  2012. Computational methods for electron tomography. Micron 43:1010–30 [Google Scholar]
  78. Schur FKM, Hagen WJH, de Marco A, Briggs JAG. 78.  2013. Determination of protein structure at 8.5 Å resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 184:394–400 [Google Scholar]
  79. Chlanda P, Carbajal MA, Cyrklaff M, Griffiths G, Krijnse-Locker J. 79.  2009. Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell Host Microbe 6:81–90 [Google Scholar]
  80. Mutsafi Y, Shimoni E, Shimon A, Minsky A. 80.  2013. Membrane assembly during the infection cycle of the giant Mimivirus. PLoS Pathog. 9:e1003367 [Google Scholar]
  81. Suárez C, Welsch S, Chlanda P, Hagen W, Hoppe S. 81.  et al. 2013. Open membranes are the precursors for assembly of large DNA viruses. Cell. Microbiol. 15:1883–95 [Google Scholar]
  82. Suzan-Monti M, La Scola B, Barrassi L, Espinosa L, Raoult D. 82.  2007. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus. PLoS ONE 2:e328 [Google Scholar]
  83. Aoyama K, Takagi T, Hirase A, Miyazawa A. 83.  2008. STEM tomography for thick biological specimens. Ultramicroscopy 109:70–80 [Google Scholar]
  84. Krijnse-Locker J, Schleich S, Rodríguez D, Goud B, Snijder EJ, Griffiths G. 84.  1996. The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J. Biol. Chem. 271:14950–58 [Google Scholar]
  85. Rodríguez JR, Risco C, Carrascosa JL, Esteban M, Rodríguez D. 85.  1998. Vaccinia virus 15-kilodalton (A14L) protein is essential for assembly and attachment of viral crescents to virosomes. J. Virol. 72:1287–96 [Google Scholar]
  86. Grünewald K, Cyrklaff M. 86.  2006. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 9:437–42 [Google Scholar]
  87. Ibiricu I, Huiskonen JT, Döhner K, Bradke F, Sodeik B, Grünewald K. 87.  2011. Cryo electron tomography of herpes simplex virus during axonal transport and secondary envelopment in primary neurons. PLoS Pathog. 7:e1002406 [Google Scholar]
  88. Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. 88.  2012. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. PLoS ONE 7:e47912 [Google Scholar]
  89. Miyazaki N, Nakagawa A, Iwasaki K. 89.  2013. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front. Microbiol. 4:1–9 [Google Scholar]
  90. Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN. 90.  et al. 2008. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–99 [Google Scholar]
  91. Carlson LA, de Marco A, Oberwinkler H, Habermann, Briggs JAG. 91.  et al. 2010. Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog. 6:e1001173 [Google Scholar]
  92. Briggs JAG, Kräusslich H-G. 92.  2011. The molecular architecture of HIV. J. Mol. Biol. 410:491–500 [Google Scholar]
  93. Noda T, Sagara H, Yen A, Takada A, Kida H. 93.  et al. 2006. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–92 [Google Scholar]
  94. Vijayakrishnan S, Loney C, Jackson D, Suphamungmee W, Rixon FJ, Bhella D. 94.  2013. Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog. 9:e1003413 [Google Scholar]
  95. Welsch S, Kolesnikova L, Krähling V, Riches JD, Becker S, Briggs JAG. 95.  2010. Electron tomography reveals the steps in filovirus budding. PLoS Pathog. 6:e1000875 [Google Scholar]
  96. Bharat TAM, Riches JD, Kolesnikova L, Welsch S, Krähling V. 96.  et al. 2011. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 9:e1001196 [Google Scholar]
  97. Noda T, Ebihara H, Muramoto Y, Fuji K, Takada A. 97.  et al. 2006. Assembly and budding of Ebolavirus. PLoS Pathog. 2:e99 [Google Scholar]
  98. Welsch S, Müller B, Kräusslich H-G. 98.  2007. More than one door—budding of enveloped viruses through cellular membranes. FEBS Lett. 581:2089–97 [Google Scholar]
  99. Votteler J, Sundquist WI. 99.  2013. Virus budding and the ESCRT pathway. Cell Host Microbe 14:232–41 [Google Scholar]
  100. Schauflinger M, Fischer D, Schreiber A, Chevillotte M, Walther P. 100.  et al. 2011. The tegument protein UL71 of human cytomegalovirus is involved in late envelopment and affects multivesicular bodies. J. Virol. 85:3821–32 [Google Scholar]
  101. Schauflinger M, Villinger C, Mertens T, Walther P, von Einem J. 101.  2013. Analysis of human cytomegalovirus secondary envelopment by advanced electron microscopy. Cell. Microbiol. 15:305–14 [Google Scholar]
  102. Mettenleiter TC. 102.  2004. Budding events in herpesvirus morphogenesis. Virus Res. 106:167–80 [Google Scholar]
  103. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD. 103.  et al. 2001. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–48 [Google Scholar]
  104. Soonsawad P, Xing L, Milla E, Espinoza JM, Kawano M. 104.  et al. 2010. Structural evidence of glycoprotein assembly in cellular membrane compartments prior to alphavirus budding. J. Virol. 84:11145–51 [Google Scholar]
  105. von Schwedler UK, Stuchell M, Müller B, Ward DM, Chung H-Y. 105.  et al. 2003. The protein network of HIV budding. Cell 114:701–13 [Google Scholar]
  106. Jolly C, Mitar I, Sattentau QJ. 106.  2007. Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J. Virol. 81:13916–21 [Google Scholar]
  107. Piguet V, Sattentau Q. 107.  2004. Dangerous liaisons at the virological synapse. J. Clin. Investig. 114:605–10 [Google Scholar]
  108. Groot F, Welsch S, Sattentau QJ. 108.  2008. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111:4660–63 [Google Scholar]
  109. Waki K, Freed EO. 109.  2010. Macrophages and cell-cell spread of HIV-1. Viruses 2:1603–20 [Google Scholar]
  110. Spearman P. 110.  2006. Cellular cofactors involved in HIV assembly and budding. Curr. Opin. HIV AIDS 1:200–7 [Google Scholar]
  111. Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A. 111.  et al. 2002. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3:718–29 [Google Scholar]
  112. Yu HJ, Reuter MA, McDonald D. 112.  2008. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4:e1000134 [Google Scholar]
  113. Marsh M, Theusner K, Pelchen-Matthews A. 113.  2009. HIV assembly and budding in macrophages. Biochem. Soc. Trans. 37:185–89 [Google Scholar]
  114. Welsch S, Groot F, Kräusslich H-G, Keppler OT, Sattentau QJ. 114.  2011. Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages. J. Virol. 85:7922–27 [Google Scholar]
  115. Bennett AE, Narayan K, Shi D, Hartnell LM, Gousset K. 115.  et al. 2009. Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages. PLoS Pathog. 5:e1000591 [Google Scholar]
  116. Usami Y, Popov S, Popova E, Inoue M, Weissenhorn W, Göttlinger HG. 116.  2009. The ESCRT pathway and HIV-1 budding. Biochem. Soc. Trans. 37:181–84 [Google Scholar]
  117. Sundquist WI, Kräusslich HG. 117.  2012. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2:a006924 [Google Scholar]
  118. Majorovits E, Nejmeddine M, Tanaka Y, Taylor GP, Fuller SD, Bangham CRM. 118.  2008. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS ONE 3:e2251 [Google Scholar]
  119. Martin N, Welsch S, Jolly C, Briggs JAG, Vaux D, Sattentau QJ. 119.  2010. Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J. Virol. 84:3516–27 [Google Scholar]
  120. Zhong P, Agosto LM, Munro JB, Mothes W. 120.  2013. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3:44–50 [Google Scholar]
  121. Kahn JS, Schnell MJ, Buonocore L, Rose JK. 121.  1999. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254:81–91 [Google Scholar]
  122. Paloheimo O, Ihalainen TO, Tauriainen S, Välilehto O, Kirjavainen S. 122.  et al. 2011. Coxsackievirus B3-induced cellular protrusions: structural characteristics and functional competence. J. Virol. 85:6714–24 [Google Scholar]
  123. Iwasaki Y, Clark HF. 123.  1975. Cell to cell transmission of virus in the central nervous system. II. Experimental rabies in mouse. Lab. Investig. 33:391–99 [Google Scholar]
  124. Dingwell KS, Johnson DC. 124.  1998. The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J. Virol. 72:8933–42 [Google Scholar]
  125. van Leeuwen H, Elliott G, O'Hare P. 125.  2002. Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress. J. Virol. 76:3471–81 [Google Scholar]
  126. Rudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S. 126.  et al. 2009. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J. Virol. 83:6234–46 [Google Scholar]
  127. Jolly C, Mitar I, Sattentau QJ. 127.  2007. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J. Virol. 81:5547–60 [Google Scholar]
  128. Kupfer A, Swain SL, Singer SJ. 128.  1987. The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J. Exp. Med. 165:1565–80 [Google Scholar]
  129. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. 129.  2006. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–65 [Google Scholar]
  130. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A. 130.  et al. 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10:211–19 [Google Scholar]
  131. Hübner W, McNerney GP, Chen P, Dale BM, Gordon RE. 131.  et al. 2009. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323:1743–47 [Google Scholar]
  132. Gan L, Jensen GJ. 132.  2012. Electron tomography of cells. Q. Rev. Biophys. 45:27–56 [Google Scholar]
  133. Medalia O, Beck M, Ecke M, Weber I, Neujahr R. 133.  et al. 2007. Organization of actin networks in intact filopodia. Curr. Biol. 17:79–84 [Google Scholar]
  134. Wang K, Strunk K, Zhao G, Gray JL, Zhang P. 134.  2012. 3D structure determination of native mammalian cells using cryo-FIB and cryo-electron tomography. J. Struct. Biol. 180:318–26 [Google Scholar]
  135. Rigort A, Villa E, Bäuerlein FJ, Engel BD, Plitzko JM. 135.  2012. Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. Methods Cell Biol. 111:259–81 [Google Scholar]
  136. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM. 136.  et al. 2010. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc. Natl. Acad. Sci. USA 107:13336–41 [Google Scholar]
  137. Lim JP, Gleeson PA. 137.  2011. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89:836–43 [Google Scholar]
  138. Garcia E, Nikolic DS, Piguet V. 138.  2008. HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9:200–14 [Google Scholar]
  139. Al-Amoudi A, Studer D, Dubochet J. 139.  2005. Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150:109–21 [Google Scholar]
  140. Chlanda P, Sachse M. 140.  2014. Cryo-electron microscopy of vitreous sections. Methods Mol. Biol. 1117:193–214 [Google Scholar]
  141. van Weering JRT, Brown E, Sharp TH, Mantell J, Cullen PJ, Verkade P. 141.  2010. Intracellular membrane traffic at high resolution. Methods Cell Biol. 96:619–48 [Google Scholar]
  142. Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. 142.  2011. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13:394–401 [Google Scholar]
  143. Fogarty KH, Zhang W, Grigsby IF, Johnson JL, Chen Y. 143.  et al. 2011. New insights into HTLV-1 particle structure, assembly, and Gag-Gag interactions in living cells. Viruses 3:770–93 [Google Scholar]
  144. Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J. 144.  et al. 2012. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 26:524–28 [Google Scholar]
  145. Lelek M, Di Nunzio F, Henriques R, Charneau P, Arhel N, Zimmer C. 145.  2012. Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc. Natl. Acad. Sci. USA 109:8564–69 [Google Scholar]
  146. Goto T, Nakai M, Ikuta K. 146.  1998. The life-cycle of human immunodeficiency virus type 1. Micron 29:123–38 [Google Scholar]
  147. Pelchen-Matthews A, Marsh M. 147.  2007. Electron microscopy analysis of viral morphogenesis. Methods Cell Biol. 79:515–42 [Google Scholar]
  148. Szakal C, Narayan K, Fu J, Lefman J, Subramaniam S. 148.  2011. Compositional mapping of the surface and interior of mammalian cells at submicrometer resolution. Anal. Chem. 83:1207–13 [Google Scholar]
  149. Narayan K, Prosa TJ, Fu J, Kelly TF, Subramaniam S. 149.  2012. Chemical mapping of mammalian cells by atom probe tomography. J. Struct. Biol. 178:98–107 [Google Scholar]
  150. Hagen C, Guttmann P, Klupp B, Werner S, Rehbein S. 150.  et al. 2012. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells. J. Struct. Biol. 177:193–201 [Google Scholar]
  151. Carzaniga R, Domart M-C, Collinson LM, Duke E. 151.  2014. Cryo-soft X-ray tomography: a journey into the world of the native-state cell. Protoplasma 251:449–58 [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085351
Loading
/content/journals/10.1146/annurev-virology-031413-085351
Loading

Data & Media loading...

Supplemental Material

    3D model of the reovirus inclusion assembled in a HeLa cell infected under permissive conditions (). Reproduced with permission from Reference 35

    3D model of the reovirus inclusion assembled in an MDCK cell infected under nonpermissive conditions. Reproduced with permission from Reference 35.

    3D model of a whole Huh7.5 cell infected with the hepatitis C virus (HCV). Reproduced with permission from Reference 33.

    Animation showing the membranous network assembled by severe acute respiratory syndrome (SARS) coronavirus in Vero E6 cells. Reproduced with permission from Reference 59.

    Electron tomography and 3D modeling of early coxsackievirus B3-–induced membrane structures in Vero E6 cells. Reproduced with permission from Reference 60.

    Tomogram and 3D surface rendering of the multivesicular bodies found at the membrane assembly zone of the mimivirus factory in cells. Reproduced with permission from Reference 80.

    3D surface rendering of an initial assembling capsid in the mimivirus factory. Reproduced with permission from Reference 80.

    Correlative fluorescence and focused ion beam scanning electron microscopy (FIB-SEM) imaging of an HIV-infected T cell. Reproduced with permission from Reference 18.

    Wave-like projections in an HIV-infected macrophage. Reproduced with permission from Reference 115.

    Viral compartment connected to cell surface via long tubules. Reproduced with permission from Reference 115.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error