1932

Abstract

In recent years, the RNA modification -methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015559
2019-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015559.html?itemId=/content/journals/10.1146/annurev-virology-092818-015559&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA 2014. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14:361–76
    [Google Scholar]
  2. 2. 
    Schwerk J, Jarret AP, Joslyn RC, Savan R 2015. Landscape of post-transcriptional gene regulation during hepatitis C virus infection. Curr. Opin. Virol. 12:75–84
    [Google Scholar]
  3. 3. 
    Li MM, MacDonald MR, Rice CM 2015. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25:320–29
    [Google Scholar]
  4. 4. 
    Batra R, Stark TJ, Clark E, Belzile JP, Wheeler EC et al. 2016. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat. Struct. Mol. Biol. 23:1101–10
    [Google Scholar]
  5. 5. 
    Mino T, Takeuchi O. 2018. Post-transcriptional regulation of immune responses by RNA binding proteins. Proc. Jpn. Acad. Ser. B 94:248–58
    [Google Scholar]
  6. 6. 
    Tan B, Gao SJ. 2018. RNA epitranscriptomics: regulation of infection of RNA and DNA viruses by N6-methyladenosine (m6A). Rev. Med. Virol. 28:e1983
    [Google Scholar]
  7. 7. 
    Brocard M, Ruggieri A, Locker N 2017. m6A RNA methylation, a new hallmark in virus-host interactions. J. Gen. Virol. 98:2207–14
    [Google Scholar]
  8. 8. 
    Gonzales-van Horn SR, Sarnow P 2017. Making the mark: the role of adenosine modifications in the life cycle of RNA viruses. Cell Host Microbe 21:661–69
    [Google Scholar]
  9. 9. 
    Gokhale NS, Horner SM. 2017. RNA modifications go viral. PLOS Pathog 13:e1006188
    [Google Scholar]
  10. 10. 
    Kennedy EM, Courtney DG, Tsai K, Cullen BR 2017. Viral epitranscriptomics. J. Virol. 91:e02263–16
    [Google Scholar]
  11. 11. 
    Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S et al. 2018. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46:D327–34
    [Google Scholar]
  12. 12. 
    Agris PF, Vendeix FA, Graham WD 2007. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366:1–13
    [Google Scholar]
  13. 13. 
    Agris PF. 2008. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 9:629–35
    [Google Scholar]
  14. 14. 
    Sharma S, Lafontaine DLJ. 2015. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40:560–75
    [Google Scholar]
  15. 15. 
    Shatkin AJ. 1976. Capping of eucaryotic mRNAs. Cell 9:645–53
    [Google Scholar]
  16. 16. 
    Ramanathan A, Robb GB, Chan SH 2016. mRNA capping: biological functions and applications. Nucleic Acids Res 44:7511–26
    [Google Scholar]
  17. 17. 
    Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46
    [Google Scholar]
  18. 18. 
    Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ et al. 2018. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872–86.e24
    [Google Scholar]
  19. 19. 
    Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–33
    [Google Scholar]
  20. 20. 
    Li X, Xiong X, Zhang M, Wang K, Chen Y et al. 2017. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68:993–1005.e9
    [Google Scholar]
  21. 21. 
    Krug RM, Morgan MA, Shatkin AJ 1976. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 20:45–53
    [Google Scholar]
  22. 22. 
    Lavi S, Shatkin AJ. 1975. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. PNAS 72:2012–16
    [Google Scholar]
  23. 23. 
    Sommer S, Salditt-Georgieff M, Bachenheimer S, Darnell JE, Furuichi Y et al. 1976. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res 3:749–65
    [Google Scholar]
  24. 24. 
    Kane SE, Beemon K. 1987. Inhibition of methylation at two internal N6-methyladenosine sites caused by GAC to GAU mutations. J. Biol. Chem. 262:3422–27
    [Google Scholar]
  25. 25. 
    Kane SE, Beemon K. 1985. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol. 5:2298–306
    [Google Scholar]
  26. 26. 
    Dimock K, Stoltzfus CM. 1977. Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16:471–78
    [Google Scholar]
  27. 27. 
    Furuichi Y, Shatkin AJ, Stavnezer E, Bishop JM 1975. Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA. Nature 257:618–20
    [Google Scholar]
  28. 28. 
    Moss B, Gershowitz A, Stringer JR, Holland LE, Wagner EK 1977. 5′-Terminal and internal methylated nucleosides in herpes simplex virus type 1 mRNA. J. Virol. 23:234–39
    [Google Scholar]
  29. 29. 
    Canaani D, Kahana C, Lavi S, Groner Y 1979. Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Res 6:2879–99
    [Google Scholar]
  30. 30. 
    Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R 2018. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLOS Biol 16:e2006577
    [Google Scholar]
  31. 31. 
    Hyde JL, Diamond MS. 2015. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479–480:66–74
    [Google Scholar]
  32. 32. 
    Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosalka J et al. 2018. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat. Struct. Mol. Biol. 25:778–86
    [Google Scholar]
  33. 33. 
    Dev RR, Ganji R, Singh SP, Mahalingam S, Banerjee S, Khosla S 2017. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem. J. 474:2009–26
    [Google Scholar]
  34. 34. 
    McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C et al. 2018. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 46:5776–91
    [Google Scholar]
  35. 35. 
    Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y 2019. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565:500–4
    [Google Scholar]
  36. 36. 
    Li X, Xiong X, Yi C 2016. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14:23–31
    [Google Scholar]
  37. 37. 
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6
    [Google Scholar]
  38. 38. 
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  39. 39. 
    Vandivier LE, Gregory BD. 2017. Reading the epitranscriptome: new techniques and perspectives. Enzymes 41:269–98
    [Google Scholar]
  40. 40. 
    Meng J, Lu Z, Liu H, Zhang L, Zhang S et al. 2014. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69:274–81
    [Google Scholar]
  41. 41. 
    Chen K, Lu Z, Wang X, Fu Y, Luo GZ et al. 2015. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. Engl. 54:1587–90
    [Google Scholar]
  42. 42. 
    Grozhik AV, Linder B, Olarerin-George AO, Jaffrey SR 2017. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP). Methods Mol. Biol. 1562:55–78
    [Google Scholar]
  43. 43. 
    Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12:767–72
    [Google Scholar]
  44. 44. 
    Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ et al. 2015. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29:2037–53
    [Google Scholar]
  45. 45. 
    Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB et al. 2017. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
    [Google Scholar]
  46. 46. 
    Liu B, Merriman DK, Choi SH, Schumacher MA, Plangger R et al. 2018. A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nat. Commun. 9:2761
    [Google Scholar]
  47. 47. 
    Zeng Y, Wang S, Gao S, Soares F, Ahmed M et al. 2018. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLOS Biol 16:e2006092
    [Google Scholar]
  48. 48. 
    Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H et al. 2019. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363:eaav0080
    [Google Scholar]
  49. 49. 
    Sun H, Zhang M, Li K, Bai D, Yi C 2019. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res 29:80–82
    [Google Scholar]
  50. 50. 
    Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV et al. 2017. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541:371–75
    [Google Scholar]
  51. 51. 
    Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–47
    [Google Scholar]
  52. 52. 
    Liu J, Yue Y, Han D, Wang X, Fu Y et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95
    [Google Scholar]
  53. 53. 
    Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  54. 54. 
    Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–89
    [Google Scholar]
  55. 55. 
    Wen J, Lv R, Ma H, Shen H, He C et al. 2018. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69:1028–38.e6
    [Google Scholar]
  56. 56. 
    Yue Y, Liu J, Cui X, Cao J, Luo G et al. 2018. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10
    [Google Scholar]
  57. 57. 
    Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29
    [Google Scholar]
  58. 58. 
    Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC 2014. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16:191–98
    [Google Scholar]
  59. 59. 
    Shi H, Wang X, Lu Z, Zhao BS, Ma H et al. 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–28
    [Google Scholar]
  60. 60. 
    Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99
    [Google Scholar]
  61. 61. 
    Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  62. 62. 
    Arguello AE, DeLiberto AN, Kleiner RE 2017. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139:17249–52
    [Google Scholar]
  63. 63. 
    Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ et al. 2017. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24:870–78
    [Google Scholar]
  64. 64. 
    Frye M, Harada BT, Behm M, He C 2018. RNA modifications modulate gene expression during development. Science 361:1346–49
    [Google Scholar]
  65. 65. 
    Yang Y, Hsu PJ, Chen YS, Yang YG 2018. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–24
    [Google Scholar]
  66. 66. 
    Meyer KD, Jaffrey SR. 2014. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15:313–26
    [Google Scholar]
  67. 67. 
    Park OH, Ha H, Lee Y, Boo SH, Kwon DH et al. 2019. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 74:494–507.e8
    [Google Scholar]
  68. 68. 
    Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F et al. 2017. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169:326–37.e12
    [Google Scholar]
  69. 69. 
    Huang H, Weng H, Zhou K, Wu T, Zhao BS et al. 2019. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567:414–19
    [Google Scholar]
  70. 70. 
    Choe J, Lin S, Zhang W, Liu Q, Wang L et al. 2018. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556–60
    [Google Scholar]
  71. 71. 
    Lin S, Choe J, Du P, Triboulet R, Gregory RI 2016. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62:335–45
    [Google Scholar]
  72. 72. 
    Wang P, Doxtader KA, Nam Y 2016. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63:306–17
    [Google Scholar]
  73. 73. 
    Sledz P, Jinek M. 2016. Structural insights into the molecular mechanism of the m6A writer complex. eLife 5:e18434
    [Google Scholar]
  74. 74. 
    Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N et al. 2018. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev 32:415–29
    [Google Scholar]
  75. 75. 
    Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  76. 76. 
    Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y et al. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–35.e14
    [Google Scholar]
  77. 77. 
    Doxtader KA, Wang P, Scarborough AM, Seo D, Conrad NK, Nam Y 2018. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol. Cell 71:1001–11.e4
    [Google Scholar]
  78. 78. 
    Ma H, Wang X, Cai J, Dai Q, Natchiar SK et al. 2019. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15:88–94
    [Google Scholar]
  79. 79. 
    Shen F, Huang W, Huang JT, Xiong J, Yang Y et al. 2015. Decreased N6-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab 100:E148–54
    [Google Scholar]
  80. 80. 
    Wei J, Liu F, Lu Z, Fei Q, Ai Y et al. 2018. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71:973–85.e5
    [Google Scholar]
  81. 81. 
    Li S, Mason CE. 2014. The pivotal regulatory landscape of RNA modifications. Annu. Rev. Genom. Hum. Genet. 15:127–50
    [Google Scholar]
  82. 82. 
    He C. 2010. Grand challenge commentary: RNA epigenetics?. Nat. Chem. Biol. 6:863–65
    [Google Scholar]
  83. 83. 
    Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–64
    [Google Scholar]
  84. 84. 
    Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T 2017. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–63
    [Google Scholar]
  85. 85. 
    Patil DP, Pickering BF, Jaffrey SR 2018. Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol 28:113–27
    [Google Scholar]
  86. 86. 
    Huang H, Weng H, Sun W, Qin X, Shi H et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–95
    [Google Scholar]
  87. 87. 
    Du H, Zhao Y, He J, Zhang Y, Xi H et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7:12626
    [Google Scholar]
  88. 88. 
    Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–19
    [Google Scholar]
  89. 89. 
    Lesbirel S, Viphakone N, Parker M, Parker J, Heath C et al. 2018. The m6A-methylase complex recruits TREX and regulates mRNA export. Sci. Rep. 8:13827
    [Google Scholar]
  90. 90. 
    Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y et al. 2018. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLOS Genet 14:e1007412
    [Google Scholar]
  91. 91. 
    Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010
    [Google Scholar]
  92. 92. 
    Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J 2015. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290:24902–13
    [Google Scholar]
  93. 93. 
    Xu C, Wang X, Liu K, Roundtree IA, Tempel W et al. 2014. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10:927–29
    [Google Scholar]
  94. 94. 
    Zhu T, Roundtree IA, Wang P, Wang X, Wang L et al. 2014. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res 24:1493–96
    [Google Scholar]
  95. 95. 
    Li F, Zhao D, Wu J, Shi Y 2014. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res 24:1490–92
    [Google Scholar]
  96. 96. 
    Shi H, Zhang X, Weng YL, Lu Z, Liu Y et al. 2018. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563:249–53
    [Google Scholar]
  97. 97. 
    Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J et al. 2018. Dynamic m6A methylation facilitates mRNA triaging to stress granules. Life Sci. Alliance 1:e201800113
    [Google Scholar]
  98. 98. 
    Li M, Zhao X, Wang W, Shi H, Pan Q et al. 2018. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19:69
    [Google Scholar]
  99. 99. 
    Zhang C, Chen Y, Sun B, Wang L, Yang Y et al. 2017. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549:273–76
    [Google Scholar]
  100. 100. 
    Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591–94
    [Google Scholar]
  101. 101. 
    Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS 2017. Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68:374–87.e12
    [Google Scholar]
  102. 102. 
    Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X et al. 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–27
    [Google Scholar]
  103. 103. 
    Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG et al. 2017. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 6:e2611
    [Google Scholar]
  104. 104. 
    Kretschmer J, Rao H, Hackert P, Sloan KE, Hobartner C, Bohnsack MT 2018. The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA 24:1339–50
    [Google Scholar]
  105. 105. 
    Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF 2015. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162:1299–308
    [Google Scholar]
  106. 106. 
    Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM et al. 2016. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–65
    [Google Scholar]
  107. 107. 
    Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y et al. 2016. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–73
    [Google Scholar]
  108. 108. 
    Neufeldt CJ, Joyce MA, Van Buuren N, Levin A, Kirkegaard K et al. 2016. The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. PLOS Pathog 12:e1005428
    [Google Scholar]
  109. 109. 
    Hao H, Hao S, Chen H, Chen Z, Zhang Y et al. 2019. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 47:362–74
    [Google Scholar]
  110. 110. 
    Narayan P, Ayers DF, Rottman FM, Maroney PA, Nilsen TW 1987. Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Mol. Cell. Biol. 7:1572–75
    [Google Scholar]
  111. 111. 
    Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K et al. 2017. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–86.e5
    [Google Scholar]
  112. 112. 
    Riquelme-Barrios S, Pereira-Montecinos C, Valiente-Echeverria F, Soto-Rifo R 2018. Emerging roles of N6-methyladenosine on HIV-1 RNA metabolism and viral replication. Front. Microbiol. 9:576
    [Google Scholar]
  113. 113. 
    Beemon K, Keith J. 1977. Localization of N6-methyladenosine in the Rous sarcoma virus genome. J. Mol. Biol. 113:165–79
    [Google Scholar]
  114. 114. 
    Stoltzfus CM, Dane RW. 1982. Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J. Virol. 42:918–31
    [Google Scholar]
  115. 115. 
    Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V et al. 2016. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol. 1:16011
    [Google Scholar]
  116. 116. 
    Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D et al. 2016. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19:675–85
    [Google Scholar]
  117. 117. 
    Lu W, Tirumuru N, St Gelais C, Koneru PC, Liu C et al. 2018. N6-methyladenosine–binding proteins suppress HIV-1 infectivity and viral production. J. Biol. Chem. 293:12992–3005
    [Google Scholar]
  118. 118. 
    Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L 2016. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife 5:e15528
    [Google Scholar]
  119. 119. 
    Tirumuru N, Wu L. 2019. HIV-1 envelope proteins up-regulate N6-methyladenosine levels of cellular RNA independently of viral replication. J. Biol. Chem. 294:3249–60
    [Google Scholar]
  120. 120. 
    Imam H, Khan M, Gokhale NS, McIntyre ABR, Kim GW et al. 2018. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. PNAS 115:8829–34
    [Google Scholar]
  121. 121. 
    Finkel D, Groner Y. 1983. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology 131:409–25
    [Google Scholar]
  122. 122. 
    Tsai K, Courtney DG, Cullen BR 2018. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLOS Pathog 14:e1006919
    [Google Scholar]
  123. 123. 
    Ye F, Chen ER, Nilsen TW 2017. Kaposi's sarcoma-associated herpesvirus utilizes and manipulates RNA N6-adenosine methylation to promote lytic replication. J. Virol. 91:e00466–17
    [Google Scholar]
  124. 124. 
    Tan B, Liu H, Zhang S, da Silva SR, Zhang L et al. 2018. Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat. Microbiol. 3:108–20
    [Google Scholar]
  125. 125. 
    Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA 2018. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLOS Pathog 14:e1006995
    [Google Scholar]
  126. 126. 
    Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I 2018. RNA m6A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 32:1472–84
    [Google Scholar]
  127. 127. 
    Winkler R, Gillis E, Lasman L, Safra M, Geula S et al. 2019. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20:173–82
    [Google Scholar]
  128. 128. 
    McFadden MJ, Gokhale NS, Horner SM 2017. Protect this house: cytosolic sensing of viruses. Curr. Opin. Virol. 22:36–43
    [Google Scholar]
  129. 129. 
    Kariko K, Buckstein M, Ni H, Weissman D 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–75
    [Google Scholar]
  130. 130. 
    Durbin AF, Wang C, Marcotrigiano J, Gehrke L 2016. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. mBio 7:e00833–16
    [Google Scholar]
  131. 131. 
    Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ et al. 2018. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun. 9:3361
    [Google Scholar]
  132. 132. 
    Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H et al. 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543:248–51
    [Google Scholar]
  133. 133. 
    Pardi N, Secreto AJ, Shan X, Debonera F, Glover J et al. 2017. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 8:14630
    [Google Scholar]
  134. 134. 
    Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V et al. 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 168:1114–25.e10
    [Google Scholar]
  135. 135. 
    Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–56
    [Google Scholar]
  136. 136. 
    Johnson B, VanBlargan LA, Xu W, White JP, Shan C et al. 2018. Human IFIT3 modulates IFIT1 RNA binding specificity and protein stability. Immunity 48:487–99.e5
    [Google Scholar]
  137. 137. 
    Dong H, Chang DC, Hua MH, Lim SP, Chionh YH et al. 2012. 2′-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLOS Pathog 8:e1002642
    [Google Scholar]
  138. 138. 
    Zheng Q, Hou J, Zhou Y, Li Z, Cao X 2017. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat. Immunol. 18:1094–103
    [Google Scholar]
  139. 139. 
    Shah A, Rashid F, Awan HM, Hu S, Wang X et al. 2017. The DEAD-box RNA helicase DDX3 interacts with m6A RNA demethylase ALKBH5. Stem Cells Int 2017:8596135
    [Google Scholar]
  140. 140. 
    Valiente-Echeverria F, Hermoso MA, Soto-Rifo R 2015. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev. Med. Virol. 25:286–99
    [Google Scholar]
  141. 141. 
    Feng Z, Li Q, Meng R, Yi B, Xu Q 2018. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J. Cell. Mol. Med. 22:2558–68
    [Google Scholar]
  142. 142. 
    Zhang Y, Wang X, Zhang X, Wang J, Ma Y et al. 2018. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. PNAS 116:976–81
    [Google Scholar]
  143. 143. 
    Bidet K, Dadlani D, Garcia-Blanco MA 2014. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLOS Pathog 10:e1004242
    [Google Scholar]
  144. 144. 
    Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB et al. 2017. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biol 15:e2004086
    [Google Scholar]
  145. 145. 
    Li HB, Tong J, Zhu S, Batista PJ, Duffy EE et al. 2017. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–42
    [Google Scholar]
  146. 146. 
    Tong J, Cao G, Zhang T, Sefik E, Vesely MCA et al. 2018. m6A mRNA methylation sustains Treg suppressive functions. Cell Res 28:253–56
    [Google Scholar]
  147. 147. 
    Boerneke MA, Ehrhardt JE, Weeks KM 2019. Physical and functional mapping of viral RNA genomes by SHAPE. Annu. Rev. Virol. 6:91–115
    [Google Scholar]
  148. 148. 
    Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET 2015. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137:2107–15
    [Google Scholar]
  149. 149. 
    Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–90
    [Google Scholar]
  150. 150. 
    Mizrahi O, Nachshon A, Shitrit A, Gelbart IA, Dobesova M et al. 2018. Virus-induced changes in mRNA secondary structure uncover cis-regulatory elements that directly control gene expression. Mol. Cell 72:862–74.e5
    [Google Scholar]
  151. 151. 
    Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV et al. 2014. Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res 42:e27
    [Google Scholar]
  152. 152. 
    Xiao Y, Wang Y, Tang Q, Wei L, Zhang X, Jia G 2018. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification. Angew. Chem. Int. Ed. Engl. 57:15995–6000
    [Google Scholar]
  153. 153. 
    Hengesbach M, Meusburger M, Lyko F, Helm M 2008. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14:180–87
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015559
Loading
/content/journals/10.1146/annurev-virology-092818-015559
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error