1932

Abstract

Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015819
2019-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015819.html?itemId=/content/journals/10.1146/annurev-virology-092818-015819&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Asija K, Teschke CM. 2018. Lessons from bacteriophages part 2: a saga of scientific breakthroughs and prospects for their use in human health. PLOS Pathog 14:e1006970
    [Google Scholar]
  2. 2. 
    Asija K, Teschke CM. 2018. Lessons from bacteriophages part 1: deriving utility from protein structure, function, and evolution. PLOS Pathog 14:e1006971
    [Google Scholar]
  3. 3. 
    Prevelige PE Jr., Thomas D, King J. 1993. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. J. 64:824–35
    [Google Scholar]
  4. 4. 
    Prevelige PE Jr., King J. 1993. Assembly of bacteriophage P22: a model for ds-DNA virus assembly. Prog. Med. Virol. 40:206–21
    [Google Scholar]
  5. 5. 
    Prevelige PE, Thomas D, King J 1988. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J. Mol. Biol 202:743–57
    [Google Scholar]
  6. 6. 
    Traub F, Maeder M. 1984. Formation of the prohead core of bacteriophage T4 in vivo. J. Virol. 49:892–901
    [Google Scholar]
  7. 7. 
    van Driel R, Couture E 1978. Assembly of the scaffolding core of bacteriophage T4 preheads. J. Mol. Biol. 123:713–19
    [Google Scholar]
  8. 8. 
    Newcomb WW, Brown JC. 1991. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J. Virol. 65:613–20
    [Google Scholar]
  9. 9. 
    Fuller MT, King J. 1981. Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology 112:529–47
    [Google Scholar]
  10. 10. 
    Fuller MT, King J. 1982. Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. J. Mol. Biol. 156:633–65
    [Google Scholar]
  11. 11. 
    Homa FL, Brown JC. 1997. Capsid assembly and DNA packaging in herpes simplex virus. Rev. Med. Virol. 7:107–22
    [Google Scholar]
  12. 12. 
    Preston VG, Al-Kobaisi MF, McDougall IM, Rixon FJ 1994. The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. J. Gen. Virol. 75:2355–66
    [Google Scholar]
  13. 13. 
    Black LW, Rao VB. 2012. Structure, assembly, and DNA packaging of the bacteriophage T4 head. Adv. Virus Res. 82:119–53
    [Google Scholar]
  14. 14. 
    Kochan J, Murialdo H. 1983. Early intermediates in bacteriophage lambda prohead assembly II. Identification of biologically active intermediates. Virology 131:100–15
    [Google Scholar]
  15. 15. 
    Medina E, Wieczorek D, Medina EM, Yang Q, Feiss M, Catalano CE 2010. Assembly and maturation of the bacteriophage lambda procapsid: gpC is the viral protease. J. Mol. Biol. 401:813–30
    [Google Scholar]
  16. 16. 
    Casjens S, Adams MB, Hall C, King J 1985. Assembly-controlled autogenous modulation of bacteriophage P22 scaffolding protein gene expression. J. Virol. 53:174–79
    [Google Scholar]
  17. 17. 
    Lee CS, Guo P. 1995. Sequential interactions of structural proteins in phage φ29 procapsid assembly. J. Virol. 69:5024–32
    [Google Scholar]
  18. 18. 
    Booy FP, Newcomb WW, Trus BL, Brown JC, Baker TS, Steven AC 1991. Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64:1007–15
    [Google Scholar]
  19. 19. 
    Fuller DN, Raymer DM, Rickgauer JP, Robertson RM, Catalano CE et al. 2007. Measurements of single DNA molecule packaging dynamics in bacteriophage λ reveal high forces, high motor processivity, and capsid transformations. J. Mol. Biol. 373:1113–22
    [Google Scholar]
  20. 20. 
    Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C 2001. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–52
    [Google Scholar]
  21. 21. 
    Fuller DN, Raymer DM, Kottadiel VI, Rao VB, Smith DE 2007. Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. PNAS 104:16868–73
    [Google Scholar]
  22. 22. 
    Prasad BVV, Prevelige PE, Marietta E, Chen RO, Thomas D et al. 1993. Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J. Mol. Biol. 231:65–74
    [Google Scholar]
  23. 23. 
    Tavares P. 2018. The bacteriophage head-to-tail interface. Virus Protein and Nucleoprotein Complexes JR Harris, D Bhella 305–28 Singapore: Springer Singapore:
    [Google Scholar]
  24. 24. 
    Alam TI, Rao VB. 2008. The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: implications to the DNA packaging mechanism. J. Mol. Biol. 376:1272–81
    [Google Scholar]
  25. 25. 
    Rao VB, Feiss M. 2015. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu. Rev. Virol. 2:351–78
    [Google Scholar]
  26. 26. 
    Oh CS, Sippy J, Charbonneau B, Crow Hutchinson J, Mejia-Romero OE et al. 2016. DNA topology and the initiation of virus DNA packaging. PLOS ONE 11:e0154785
    [Google Scholar]
  27. 27. 
    Heming JD, Conway JF, Homa FL 2017. Herpesvirus capsid assembly and DNA packaging. Cell Biol. Herpes Viruses 223:119–42
    [Google Scholar]
  28. 28. 
    Casjens SR, Gilcrease EB. 2009. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Bacteriophages 502:91–111
    [Google Scholar]
  29. 29. 
    Garver K, Guo P. 1997. Boundary of pRNA functional domains and minimum pRNA sequence requirement for specific connector binding and DNA packaging of phage phi29. RNA 3:1068–79
    [Google Scholar]
  30. 30. 
    Draper B, Rao VB. 2007. An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. J. Mol. Biol. 369:79–94
    [Google Scholar]
  31. 31. 
    Keller N, delToro D, Grimes S, Jardine PJ, Smith DE 2014. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29. Phys. Rev. Lett. 112:248101
    [Google Scholar]
  32. 32. 
    Murialdo H, Becker A. 1978. A genetic analysis of bacteriophage lambda prohead assembly in vitro. J. Mol. Biol 125:57–74
    [Google Scholar]
  33. 33. 
    Newcomb WW, Homa FL, Brown JC 2005. Involvement of the portal at an early step in herpes simplex virus capsid assembly. J. Virol. 79:10540–46
    [Google Scholar]
  34. 34. 
    Yap NL, Rao VB. 1996. Novel mutants in the 5′ upstream region of the portal protein gene 20 overcome a gp40-dependent prohead assembly block in bacteriophage T4. J. Mol. Biol. 263:539–50
    [Google Scholar]
  35. 35. 
    Bazinet C, King J. 1988. Initiation of P22 procapsid assembly in vivo. J. Mol. Biol 202:77–86
    [Google Scholar]
  36. 36. 
    Dröge A, Santos MA, Stiege AC, Alonso JC, Lurz R et al. 2000. Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. J. Mol. Biol. 296:117–32
    [Google Scholar]
  37. 37. 
    van Driel R, Couture E 1978. Assembly of bacteriophage T4 head-related structures: II. In vitro assembly of prehead-like structures. J. Mol. Biol. 123:115–28
    [Google Scholar]
  38. 37a. 
    Motwani T, Teschke CM 2019. The architect of virus assembly: portal protein nucleates procapsid assembly in bacteriophage P22. J. Virol 93:e00187–19
    [Google Scholar]
  39. 38. 
    Guo PX, Erickson S, Xu W, Olson N, Baker TS, Anderson D 1991. Regulation of the phage φ29 prohead shape and size by the portal vertex. Virology 183:366–73
    [Google Scholar]
  40. 39. 
    Laemmlli UK, Mölbert E, Showe M, Kellenberger E 1970. Form-determining function of the genes required for the assembly of the head of bacteriophage T4. J. Mol. Biol. 49:99–113
    [Google Scholar]
  41. 40. 
    Moore SD, Prevelige PE Jr. 2002. Bacteriophage p22 portal vertex formation in vivo. J. Mol. Biol. 315:975–94
    [Google Scholar]
  42. 41. 
    Tang J, Lander GC, Olia A, Li R, Casjens S et al. 2011. Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in P22. Structure 19:496–502
    [Google Scholar]
  43. 42. 
    Orlova EV, Gowen B, Dröge A, Stiege A, Weise F et al. 2003. Structure of a viral DNA gatekeeper at 10 Å resolution by cryo-electron microscopy. EMBO J 22:1255–62
    [Google Scholar]
  44. 43. 
    Guasch A, Pous J, Ibarra B, Gomis-Rüth FX, Valpuesta JMA et al. 2002. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle. J. Mol. Biol. 315:663–76
    [Google Scholar]
  45. 44. 
    Grimes S, Ma S, Gao J, Atz R, Jardine PJ 2011. Role of φ29 connector channel loops in late-stage DNA packaging. J. Mol. Biol. 410:50–59
    [Google Scholar]
  46. 45. 
    Lokareddy RK, Sankhala RS, Roy A, Afonine PV, Motwani T et al. 2017. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat. Commun. 8:14310
    [Google Scholar]
  47. 46. 
    Isidro A, Henriques AO, Tavares P 2004. The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology 322:253–63
    [Google Scholar]
  48. 47. 
    Freeman KG, Behrens MA, Streletzky KA, Olsson U, Evilevitch A 2016. Portal stability controls dynamics of DNA ejection from phage. J. Phys. Chem. B 120:6421–29
    [Google Scholar]
  49. 48. 
    Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE et al. 2018. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16:760–73
    [Google Scholar]
  50. 49. 
    Earnshaw W, King J. 1978. Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. J. Mol. Biol. 126:721–47
    [Google Scholar]
  51. 50. 
    Fu CY, Prevelige PE Jr. 2009. In vitro incorporation of the phage Phi29 connector complex. Virology 394:149–53
    [Google Scholar]
  52. 51. 
    Fu CY, Uetrecht C, Kang S, Morais MC, Heck AJ et al. 2010. A docking model based on mass spectrometric and biochemical data describes phage packaging motor incorporation. Mol. Cell. Proteom. 9:1764–73
    [Google Scholar]
  53. 52. 
    Newcomb WW, Thomsen DR, Homa FL, Brown JC 2003. Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J. Virol. 77:9862–71
    [Google Scholar]
  54. 53. 
    Botstein D, Waddell CH, King J 1973. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J. Mol. Biol. 80:669–95
    [Google Scholar]
  55. 54. 
    Earnshaw W, Casjens S, Harrison SC 1976. Assembly of the head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures. J. Mol. Biol. 104:387–410
    [Google Scholar]
  56. 55. 
    King J, Lenk EV, Botstein D 1973. Mechanism of head assembly and DNA encapsulation in Salmonella phage P22: II. Morphogenetic pathway. J. Mol. Biol. 80:697–731
    [Google Scholar]
  57. 56. 
    Motwani T, Lokareddy RK, Dunbar CA, Cortines JR, Jarrold MF et al. 2017. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. Sci. Adv. 3:e1700423
    [Google Scholar]
  58. 57. 
    Chen DH, Baker ML, Hryc CF, DiMaio F, Jakana J et al. 2011. Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. PNAS 108:1355–60
    [Google Scholar]
  59. 58. 
    Traub F, Keller B, Kuhn A, Maeder M 1984. Isolation of the prohead core of bacteriophage T4 after cross-linking and determination of protein composition. J. Virol. 49:902–8
    [Google Scholar]
  60. 59. 
    Bazinet C, Benbasat J, King J, Carazo JM, Carrascosa JL 1988. Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry 27:1849–56
    [Google Scholar]
  61. 60. 
    Weigele PR, Sampson L, Winn-Stapley D, Casjens SR 2005. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J. Mol. Biol. 348:831–44
    [Google Scholar]
  62. 61. 
    Greene B, King J. 1996. Scaffolding mutants identifying domains required for P22 procapsid assembly and maturation. Virology 225:82–96
    [Google Scholar]
  63. 62. 
    Moore SD, Prevelige PE Jr. 2002. A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein. J. Virol. 76:10245–55
    [Google Scholar]
  64. 63. 
    Bazinet C, Villafane R, King J 1990. Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly. J. Mol. Biol. 216:701–16
    [Google Scholar]
  65. 64. 
    Rizzo AA, Suhanovsky MM, Baker ML, Fraser LCR, Jones LM et al. 2014. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryoEM modeling. Structure 22:830–41
    [Google Scholar]
  66. 65. 
    Gordon CL, King J. 1993. Temperature-sensitive mutations in the phage P22 coat protein which interfere with polypeptide chain folding. J. Biol. Chem. 268:9358–68
    [Google Scholar]
  67. 66. 
    Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown JC 2005. Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J. Virol. 79:132–39
    [Google Scholar]
  68. 67. 
    Yang K, Baines JD. 2009. Proline and tyrosine residues in scaffold proteins of herpes simplex virus 1 critical to the interaction with portal protein and its incorporation into capsids. J. Virol. 83:8076
    [Google Scholar]
  69. 68. 
    Yang K, Baines JD. 2009. Tryptophan residues in the portal protein of herpes simplex virus 1 critical to the interaction with scaffold proteins and incorporation of the portal into capsids. J. Virol. 83:11726
    [Google Scholar]
  70. 69. 
    Li R, Cherwa JE, Prevelige PE 2013. φ29 Scaffolding and connector structure-function relationship studied by trans-complementation. Virology 444:355–62
    [Google Scholar]
  71. 70. 
    Hsiao CL, Black LW. 1978. Head morphogenesis of bacteriophage T4. II. The role of gene 40 in initiating prehead assembly. Virology 91:15–25
    [Google Scholar]
  72. 71. 
    Urbaneja MA, Rivas S, Carrascosa JL, Valpuesta JM 1994. An intrinsic-tryptophan-fluorescence study of phage φ29 connector/nucleic acid interactions. Eur. J. Biochem. 225:747–53
    [Google Scholar]
  73. 72. 
    Parker MH, Casjens S, Prevelige PE 1998. Functional domains of bacteriophage P22 scaffolding protein. J. Mol. Biol. 281:69–79
    [Google Scholar]
  74. 73. 
    Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P 2008. Oligomerization of the SPP1 scaffolding protein. J. Mol. Biol. 378:551–64
    [Google Scholar]
  75. 74. 
    Tuma R, Parker MH, Weigele P, Sampson L, Sun Y et al. 1998. A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein. J. Mol. Biol. 281:81–94
    [Google Scholar]
  76. 75. 
    Parent KN, Schrad JR, Cingolani G 2018. Breaking symmetry in viral icosahedral capsids as seen through the lenses of X-ray crystallography and cryo-electron microscopy. Viruses 10:67
    [Google Scholar]
  77. 76. 
    Poliakov A, Duijn EV, Lander G, Fu C-Y, Johnson JE et al. 2007. Macromolecular mass spectrometry and electron microscopy as complementary tools for investigation of the heterogeneity of bacteriophage portal assemblies. J. Struct. Biol. 157:371–83
    [Google Scholar]
  78. 77. 
    Trus BL, Cheng N, Newcomb WW, Homa FL, Brown JC, Steven AC 2004. Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J. Virol. 78:12668–71
    [Google Scholar]
  79. 78. 
    Carrascosa JL, Carazo JM, Ibanez C, Santistebanz A 1985. Structure of phage φ29 connector protein assembled in vivo. Virology 141:190–200
    [Google Scholar]
  80. 79. 
    Lurz R, Orlova EV, Günther D, Dube P, Dröge A et al. 2001. Structural organisation of the head-to-tail interface of a bacterial virus. J. Mol. Biol. 310:1027–37
    [Google Scholar]
  81. 80. 
    Kochan J, Carrascosa JL, Murialdo H 1984. Bacteriophage lambda preconnectors: purification and structure. J. Mol. Biol. 174:433–47
    [Google Scholar]
  82. 81. 
    Donate LE, Herranz L, Secilla JP, Carazo J, Fujisawa H, Carrascosa J 1988. Bacteriophage T3 connector: three-dimensional structure and comparison with other viral head-tail connecting regions. J. Mol. Biol. 201:91–100
    [Google Scholar]
  83. 82. 
    Sun L, Zhang X, Gao S, Rao PA, Padilla-Sanchez V et al. 2015. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat. Commun. 6:7548
    [Google Scholar]
  84. 83. 
    Agirrezabala X, Martín-Benito J, Valle M, González JM, Valencia A et al. 2005. Structure of the connector of bacteriophage T7 at 8 Å resolution: structural homologies of a basic component of a DNA translocating machinery. J. Mol. Biol. 347:895–902
    [Google Scholar]
  85. 84. 
    Olia AS, Prevelige PE Jr., Johnson JE, Cingolani G 2011. Three-dimensional structure of a viral genome-delivery portal vertex. Nat. Struct. Mol. Biol. 18:597–603
    [Google Scholar]
  86. 85. 
    Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y et al. 2000. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408:745–50
    [Google Scholar]
  87. 86. 
    Guo F, Liu Z, Vago F, Ren Y, Wu W et al. 2013. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. PNAS 110:6811–16
    [Google Scholar]
  88. 87. 
    Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM et al. 2015. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 485:128–34
    [Google Scholar]
  89. 88. 
    Wang C, Tu J, Liu J, Molineux IJ 2019. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 18:1
    [Google Scholar]
  90. 89. 
    Molineux IJ. 2001. No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol. 40:1–8
    [Google Scholar]
  91. 90. 
    Xu J, Xiang Y. 2017. Membrane penetration by bacterial viruses. J. Virol. 91:e00162–17
    [Google Scholar]
  92. 91. 
    Cuervo A, Carrascosa JL. 2012. Viral connectors for DNA encapsulation. Curr. Opin. Biotechnol. 23:529–36
    [Google Scholar]
  93. 92. 
    Chaban Y, Lurz R, Brasilès S, Cornilleau C, Karreman M et al. 2015. Structural rearrangements in the phage head-to-tail interface during assembly and infection. PNAS 112:7009–14
    [Google Scholar]
  94. 93. 
    Olia AS, Al-Bassam J, Winn-Stapley DA, Joss L, Casjens SR, Cingolani G 2006. Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4. J. Mol. Biol. 363:558–76
    [Google Scholar]
  95. 94. 
    Dixit AB, Ray K, Thomas JA, Black LW 2013. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging. Virology 446:293–302
    [Google Scholar]
  96. 95. 
    Liu Y, Jih J, Dai X, Bi G, Zhou ZH 2019. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570:257–61
    [Google Scholar]
  97. 96. 
    Nellissery JK, Szczepaniak R, Lamberti C, Weller SK 2007. A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation. J. Virol. 81:8868–77
    [Google Scholar]
  98. 97. 
    Yang K, Wills E, Baines JD 2009. The putative leucine zipper of the UL6-encoded portal protein of herpes simplex virus 1 is necessary for interaction with pUL15 and pUL28 and their association with capsids. J. Virol. 83:4557–64
    [Google Scholar]
  99. 98. 
    Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV et al. 2007. Structural framework for DNA translocation via the viral portal protein. EMBO J 26:1984–94
    [Google Scholar]
  100. 99. 
    Lhuillier S, Gallopin M, Gilquin B, Brasilès S, Lancelot N et al. 2009. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. PNAS 106:8507–12
    [Google Scholar]
  101. 100. 
    Kornfeind EM, Visalli RJ. 2018. Human herpesvirus portal proteins: structure, function, and antiviral prospects. Rev. Med. Virol. 28:e1972
    [Google Scholar]
  102. 101. 
    Padilla-Sanchez V, Gao S, Kim HR, Kihara D, Sun L et al. 2014. Structure–function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. J. Mol. Biol. 426:1019–38
    [Google Scholar]
  103. 102. 
    Bayfield OW, Klimuk E, Winkler DC, Hesketh EL, Chechik M et al. 2019. Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. PNAS 116:3556–61
    [Google Scholar]
  104. 103. 
    Albright BS, Nellissery J, Szczepaniak R, Weller SK 2011. Disulfide bond formation in the herpes simplex virus 1 UL6 protein is required for portal ring formation and genome encapsidation. J. Virol. 85:8616–24
    [Google Scholar]
  105. 104. 
    Rodríguez-Casado A, Thomas GJ. 2003. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22. Biochemistry 42:3437–45
    [Google Scholar]
  106. 105. 
    Wu W, Leavitt JC, Cheng N, Gilcrease EB, Motwani T et al. 2016. Localization of the houdinisome (ejection proteins) inside the bacteriophage P22 virion by bubblegram imaging. mBio 7:e01152–16
    [Google Scholar]
  107. 106. 
    Casjens S, Wyckoff E, Hayden M, Sampson L, Eppler K et al. 1992. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J. Mol. Biol. 224:1055–74
    [Google Scholar]
  108. 107. 
    Bedwell GJ, Prevelige PE. 2017. Targeted mutagenesis of the P22 portal protein reveals the mechanism of signal transmission during DNA packaging. Virology 505:127–38
    [Google Scholar]
  109. 108. 
    Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P et al. 2006. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–95
    [Google Scholar]
  110. 109. 
    Zheng H, Olia AS, Gonen M, Andrews S, Cingolani G, Gonen T 2008. A conformational switch in bacteriophage P22 portal protein primes genome injection. Mol. Cell 29:376–83
    [Google Scholar]
  111. 110. 
    Liang L, Zhao H, An B, Tang L 2017. High-resolution structure of podovirus tail adaptor suggests repositioning of an octad motif that mediates the sequential tail assembly. PNAS 115:313–18
    [Google Scholar]
  112. 111. 
    Tang L, Marion WR, Cingolani G, Prevelige PE, Johnson JE 2005. Three‐dimensional structure of the bacteriophage P22 tail machine. EMBO J 24:2087–95
    [Google Scholar]
  113. 112. 
    Olia AS, Bhardwaj A, Joss L, Casjens S, Cingolani G 2007. Role of gene 10 protein in the hierarchical assembly of the bacteriophage P22 portal vertex structure. Biochemistry 46:8776–84
    [Google Scholar]
  114. 113. 
    Dixit AB, Ray K, Black LW 2012. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation. PNAS 109:20419–24
    [Google Scholar]
  115. 114. 
    Ordyan M, Alam I, Mahalingam M, Rao VB, Smith DE 2018. Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat. Commun. 9:5434
    [Google Scholar]
  116. 115. 
    Berndsen ZT, Keller N, Smith DE 2015. Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA. Biophys. J. 108:315–24
    [Google Scholar]
  117. 116. 
    Geng J, Fang H, Haque F, Zhang L, Guo P 2011. Three reversible and controllable discrete steps of channel gating of a viral DNA packaging motor. Biomaterials 32:8234–42
    [Google Scholar]
  118. 117. 
    Cuervo A, Vaney MC, Antson AA, Tavares P, Oliveira L 2007. Structural rearrangements between portal protein subunits are essential for viral DNA translocation. J. Biol. Chem. 282:18907–13
    [Google Scholar]
  119. 118. 
    Agirrezabala X, Martín‐Benito J, Castón JR, Miranda R, Valpuesta JM, Carrascosa JL 2005. Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–29
    [Google Scholar]
  120. 119. 
    Johnson JE, Chiu W. 2007. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol. 17:237–43
    [Google Scholar]
  121. 120. 
    McNulty R, Cardone G, Gilcrease EB, Baker TS, Casjens SR, Johnson JE 2018. Cryo-EM elucidation of the structure of bacteriophage P22 virions after genome release. Biophys. J. 114:1295–301
    [Google Scholar]
  122. 121. 
    Newcomb WW, Booy FP, Brown JC 2007. Uncoating the herpes simplex virus genome. J. Mol. Biol. 370:633–42
    [Google Scholar]
  123. 122. 
    van Zeijl M, Fairhurst J, Jones TR, Vernon SK, Morin J et al. 2000. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J. Virol. 74:9054–61
    [Google Scholar]
  124. 123. 
    Newcomb WW, Brown JC. 2002. Inhibition of herpes simplex virus replication by WAY-150138: assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation. J. Virol. 76:10084–88
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015819
Loading
/content/journals/10.1146/annurev-virology-092818-015819
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error