1932

Abstract

Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043323
2018-09-29
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043323.html?itemId=/content/journals/10.1146/annurev-virology-092917-043323&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Hatakeyama S 2017. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem. Sci. 42:297–311
    [Google Scholar]
  2. 2.  Ozato K, Shin DM, Chang TH, Morse HC 2008. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8:849–60
    [Google Scholar]
  3. 3.  Joazeiro CA, Weissman AM 2000. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–52
    [Google Scholar]
  4. 4.  Davis ME, Gack MU 2015. Ubiquitination in the antiviral immune response. Virology 479–80:52–65
    [Google Scholar]
  5. 5.  Bertin J, DiStefano PS 2000. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ 7:1273–74
    [Google Scholar]
  6. 6.  Meroni G 2012. Genomics and evolution of the TRIM gene family. Adv. Exp. Med. Biol. 770:1–9
    [Google Scholar]
  7. 7.  Sanchez JG, Chiang JJ, Sparrer KMJ, Alam SL, Chi M et al. 2016. Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep 16:1315–25
    [Google Scholar]
  8. 8.  D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE 2013. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 22:1–10
    [Google Scholar]
  9. 9.  Foss S, Watkinson R, Sandlie I, James LC, Andersen JT 2015. TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol. Rev. 268:328–39
    [Google Scholar]
  10. 10.  Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J et al. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217–21
    [Google Scholar]
  11. 11.  Choudhury NR, Heikel G, Trubitsyna M, Kubik P, Nowak JS et al. 2017. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol 15:105
    [Google Scholar]
  12. 12.  Short KM, Cox TC 2006. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J. Biol. Chem. 281:8970–80
    [Google Scholar]
  13. 13.  Edwards TA, Pyle SE, Wharton RP, Aggarwal AK 2001. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105:281–89
    [Google Scholar]
  14. 14.  Vitale N, Moss J, Vaughan M 1996. ARDi, a 64-kDa bifunctional protein containing an 18-kDa GTP-binding ADP-ribosylation factor domain and a 46-kDa GTPase-activating domain. Biochemistry 93:1941–44
    [Google Scholar]
  15. 15.  Takeuchi O, Akira S 2010. Pattern recognition receptors and inflammation. Cell 140:805–20
    [Google Scholar]
  16. 16.  Schneider WM, Chevillotte MD, Rice CM 2014. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32:513–45
    [Google Scholar]
  17. 17.  Goubau D, Deddouche S, Reis e Sousa C 2013. Cytosolic sensing of viruses. Immunity 38:855–69
    [Google Scholar]
  18. 18.  Chiang JJ, Sparrer KMJ, van Gent M, Lässig C, Huang T et al. 2017. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19:53–62
    [Google Scholar]
  19. 19.  Schlee M 2013. Master sensors of pathogenic RNA—RIG-I like receptors. Immunobiology 218:1322–35
    [Google Scholar]
  20. 20.  Chiang C, Gack MU 2017. Post-translational control of intracellular pathogen sensing pathways. Trends Immunol 38:39–52
    [Google Scholar]
  21. 21.  Gack MU, Shin YC, Joo CH, Urano T, Liang C et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–20
    [Google Scholar]
  22. 22.  Zeng W, Sun L, Jiang X, Chen X, Hou F et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–30
    [Google Scholar]
  23. 23.  Pauli EK, Chan YK, Davis ME, Gableske S, Wang MK et al. 2014. The ubiquitin-specific protease USP15 promotes RIG-I–mediated antiviral signaling by deubiquitylating TRIM25. Sci. Signal. 7:ra3
    [Google Scholar]
  24. 24.  Yan J, Li Q, Mao AP, Hu MM, Shu HB 2014. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J. Mol. Cell Biol. 6:154–63
    [Google Scholar]
  25. 25.  Lang X, Tang T, Jin T, Ding C, Zhou R, Jiang W 2017. TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity. J. Exp. Med. 214:459–73
    [Google Scholar]
  26. 26.  Narayan K, Waggoner L, Pham ST, Hendricks GL, Waggoner SN et al. 2014. TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J. Virol. 88:10748–57
    [Google Scholar]
  27. 27.  Versteeg GA, Rajsbaum R, Sánchez-Aparicio MT, Maestre AM, Valdiviezo J et al. 2013. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38:384–98
    [Google Scholar]
  28. 28.  Zhao C, Jia M, Song H, Yu Z, Wang W et al. 2017. The E3 ubiquitin ligase TRIM40 attenuates antiviral immune responses by targeting MDA5 and RIG-I. Cell Rep 21:1613–23
    [Google Scholar]
  29. 29.  Hu MM, Liao CY, Yang Q, Xie XQ, Shu HB 2017. Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J. Exp. Med. 214:973–89
    [Google Scholar]
  30. 30.  Wies E, Wang MK, Maharaj NP, Chen K, Zhou S et al. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38:437–49
    [Google Scholar]
  31. 31.  Tan P, He L, Cui J, Qian C, Cao X et al. 2017. Assembly of the WHIP-TRIM14-PPP6C mitochondrial complex promotes RIG-I-mediated antiviral signaling. Mol. Cell 68:293–307
    [Google Scholar]
  32. 32.  Zhou Z, Jia X, Xue Q, Dou Z, Ma Y et al. 2014. TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I–like receptor-mediated innate immune response. PNAS 111:E245–54
    [Google Scholar]
  33. 33.  Jia X, Zhou H, Wu C, Wu Q, Ma S et al. 2017. The ubiquitin ligase RNF125 targets innate immune adaptor protein TRIM14 for ubiquitination and degradation. J. Immunol. 198:4652–58
    [Google Scholar]
  34. 34.  Liu B, Zhang M, Chu H, Zhang H, Wu H et al. 2016. The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat. Immunol. 18:214–24
    [Google Scholar]
  35. 35.  Yang B, Wang J, Wang Y, Zhou H, Wu X et al. 2013. Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J. Immunol. 190:3613–19
    [Google Scholar]
  36. 36.  Castanier C, Zemirli N, Portier A, Garcin D, Bidère N et al. 2012. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10:44
    [Google Scholar]
  37. 37.  Qin Y, Liu Q, Tian S, Xie W, Cui J, Wang RF 2016. TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3β to TBK1. Cell Res 26:613–28
    [Google Scholar]
  38. 38.  Shi M, Cho H, Inn KS, Yang A, Zhao Z et al. 2014. Negative regulation of NF-κB activity by brain-specific TRIpartite Motif protein 9. Nat. Commun. 5:4820
    [Google Scholar]
  39. 39.  Lee Y, Song B, Park C, Kwon KS 2013. TRIM11 negatively regulates IFNβ production and antiviral activity by targeting TBK1. PLOS ONE 8:e63255
    [Google Scholar]
  40. 40.  Ran Y, Zhang J, Liu LL, Pan ZY, Nie Y et al. 2016. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J. Mol. Cell Biol. 8:31–43
    [Google Scholar]
  41. 41.  Wang P, Zhao W, Zhao K, Zhang L, Gao C 2015. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLOS Pathog 11:e1004726
    [Google Scholar]
  42. 42.  Liang Q, Deng H, Li X, Wu X, Tang Q et al. 2011. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J. Immunol. 187:4754–63
    [Google Scholar]
  43. 43.  Arimoto KI, Funami K, Saeki Y, Tanaka K, Okawa K et al. 2010. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. PNAS 107:15856–61
    [Google Scholar]
  44. 44.  Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T et al. 2013. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J. Virol. 87:257–72
    [Google Scholar]
  45. 45.  Wu J, Chen ZJ 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32:461–88
    [Google Scholar]
  46. 46.  Chen Q, Sun L, Chen ZJ 2016. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17:1142–49
    [Google Scholar]
  47. 47.  Chen M, Meng Q, Qin Y, Liang P, Tan P et al. 2016. TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol. Cell 64:105–19
    [Google Scholar]
  48. 48.  Hu MM, Yang Q, Xie XQ, Liao CY, Lin H et al. 2016. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45:555–69
    [Google Scholar]
  49. 49.  Zhang J, Hu MM, Wang YY, Shu HB 2012. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287:28646–55
    [Google Scholar]
  50. 50.  Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T et al. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33:765–76
    [Google Scholar]
  51. 51.  Wang Q, Liu X, Cui Y, Tang Y, Chen W et al. 2014. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41:919–33
    [Google Scholar]
  52. 52.  Fang R, Wang C, Jiang Q, Lv M, Gao P et al. 2017. NEMO–IKKβ are essential for IRF3 and NF-κB activation in the cGAS–STING pathway. J. Immunol. 199:3222–33
    [Google Scholar]
  53. 53.  Xing J, Zhang A, Zhang H, Wang J, Li XC et al. 2017. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat. Commun. 8:945
    [Google Scholar]
  54. 54.  Wang Y, Lian Q, Yang B, Yan S, Zhou H et al. 2015. TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLOS Pathog 11:e1005012
    [Google Scholar]
  55. 55.  Gay NJ, Symmons MF, Gangloff M, Bryant CE 2014. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14:546–58
    [Google Scholar]
  56. 56.  Zhao W, Wang L, Zhang M, Yuan C, Gao C 2012. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. J. Immunol. 188:2567–74
    [Google Scholar]
  57. 57.  Xue Q, Zhou Z, Lei X, Liu X, He B et al. 2012. TRIM38 negatively regulates TLR3-mediated IFN-β signaling by targeting TRIF for degradation. PLOS ONE 7:e46825
    [Google Scholar]
  58. 58.  Hu MM, Yang Q, Zhang J, Liu SM, Zhang Y et al. 2014. TRIM38 inhibits TNFα- and IL-1β–triggered NF-κB activation by mediating lysosome-dependent degradation of TAB2/3. PNAS 111:1509–14
    [Google Scholar]
  59. 59.  Zhao W, Wang L, Zhang M, Wang P, Yuan C et al. 2012. Tripartite motif-containing protein 38 negatively regulates TLR3/4- and RIG-I–mediated IFN-β production and antiviral response by targeting NAP1. J. Immunol. 188:5311–18
    [Google Scholar]
  60. 60.  Shi M, Deng W, Bi E, Mao K, Ji Y et al. 2008. TRIM30α negatively regulates TLR-mediated NF-κB activation by targeting TAB2 and TAB3 for degradation. Nat. Immunol. 9:369–77
    [Google Scholar]
  61. 61.  Yang Q, Liu TT, Lin H, Zhang M, Wei J et al. 2017. TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLOS Pathog 13:e1006600
    [Google Scholar]
  62. 62.  Shen Y, Li NL, Wang J, Liu B, Lester S, Li K 2012. TRIM56 is an essential component of the TLR3 antiviral signaling pathway. J. Biol. Chem. 287:36404–13
    [Google Scholar]
  63. 63.  Higgs R, Ní Gabhann J, Larbi NB, Breen EP, Fitzgerald KA, Jefferies CA 2008. The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J. Immunol. 181:1780–86
    [Google Scholar]
  64. 64.  Higgs R, Lazzari E, Wynne C, Ní Gabhann J, Espinosa A et al. 2010. Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-like receptors. PLOS ONE 5:e11776
    [Google Scholar]
  65. 65.  Zheng Q, Hou J, Zhou Y, Yang Y, Xie B, Cao X 2015. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res 25:1121–36
    [Google Scholar]
  66. 66.  Zheng Q, Hou J, Zhou Y, Yang Y, Cao X 2016. Type I IFN–inducible downregulation of microRNA-27a feedback inhibits antiviral innate response by upregulating Siglec1/TRIM27. J. Immunol. 196:1317–26
    [Google Scholar]
  67. 67.  Zha J, Han KJ, Xu LG, He W, Zhou Q et al. 2006. The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IκB kinase family members. J. Immunol. 176:1072–80
    [Google Scholar]
  68. 68.  Xing J, Weng L, Yuan B, Wang Z, Jia L et al. 2016. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat. Immunol. 17:1373–80
    [Google Scholar]
  69. 69.  Li Q, Yan J, Mao AP, Li C, Ran Y et al. 2011. Tripartite motif 8 (TRIM8) modulates TNFα- and IL-1β–triggered NF-κB activation by targeting TAK1 for K63-linked polyubiquitination. PNAS 108:19341–46
    [Google Scholar]
  70. 70.  Ye W, Hu MM, Lei CQ, Zhou Q, Lin H et al. 2017. TRIM8 negatively regulates TLR3/4-mediated innate immune response by blocking TRIF–TBK1 interaction. J. Immunol. 199:1856–64
    [Google Scholar]
  71. 71.  Ivashkiv LB, Donlin LT 2013. Regulation of type I interferon responses. Nat. Rev. Immunol. 14:36–49
    [Google Scholar]
  72. 72.  tenOever BR, Ng SL, Chua MA, McWhirter SM, García-Sastre A, Maniatis T 2007. Multiple functions of the IKK-related kinase IKKε in interferon-mediated antiviral immunity. Science 315:1274–78
    [Google Scholar]
  73. 73.  Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A et al. 2014. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 40:880–95
    [Google Scholar]
  74. 74.  Tisserand J, Khetchoumian K, Thibault C, Dembélé D, Chambon P, Losson R 2011. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J. Biol. Chem. 286:33369–79
    [Google Scholar]
  75. 75.  Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R et al. 2008. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem. Biophys. Res. Commun. 370:366–70
    [Google Scholar]
  76. 76.  Grütter MG, Luban J 2012. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr. Opin. Virol. 2:142–50
    [Google Scholar]
  77. 77.  Kutluay SB, Perez-Caballero D, Bieniasz PD 2013. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLOS Pathog 9:e1003214
    [Google Scholar]
  78. 78.  Pertel T, Hausmann S, Morger D, Züger S, Guerra J et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–65
    [Google Scholar]
  79. 79.  Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:848–53
    [Google Scholar]
  80. 80.  Yap MW, Nisole S, Lynch C, Stoye JP 2004. Trim5α protein restricts both HIV-1 and murine leukemia virus. PNAS 101:10786–91
    [Google Scholar]
  81. 81.  Ribeiro CMS, Sarrami-Forooshani R, Setiawan LC, Zijlstra-Willems EM, van Hamme JL et al. 2016. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature 540:448–52
    [Google Scholar]
  82. 82.  Kajaste-Rudnitski A, Marelli SS, Pultrone C, Pertel T, Uchil PD et al. 2011. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-κB-responsive long terminal repeat elements. J. Virol. 85:5183–96
    [Google Scholar]
  83. 83.  Turrini F, Marelli S, Kajaste-Rudnitski A, Lusic M, Van Lint C et al. 2015. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology 12:104
    [Google Scholar]
  84. 84.  Barr SD, Smiley JR, Bushman FD 2008. The interferon response inhibits HIV particle production by induction of TRIM22. PLOS Pathog 4:e1000007
    [Google Scholar]
  85. 85.  Singh R, Gaiha G, Werner L, McKim K, Mlisana K et al. 2011. Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J. Virol. 85:208–16
    [Google Scholar]
  86. 86.  Di Pietro A, Kajaste-Rudnitski A, Oteiza A, Nicora L, Towers GJ et al. 2013. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J. Virol. 87:4523–33
    [Google Scholar]
  87. 87.  Gao B, Duan Z, Xu W, Xiong S 2009. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424–33
    [Google Scholar]
  88. 88.  Yang C, Zhao X, Sun D, Yang L, Chong C et al. 2015. Interferon alpha (IFNα)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell. Mol. Immunol. 13:94–102
    [Google Scholar]
  89. 89.  Medrano LM, Rallón N, Berenguer J, Jiménez-Sousa MA, Soriano V et al. 2016. Relationship of TRIM5 and TRIM22 polymorphisms with liver disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. J. Transl. Med. 14:257
    [Google Scholar]
  90. 90.  Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N 2009. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J. Gen. Virol. 90:536–45
    [Google Scholar]
  91. 91.  Yuan T, Yao W, Tokunaga K, Yang R, Sun B 2016. An HIV-1 capsid binding protein TRIM11 accelerates viral uncoating. Retrovirology 13:72
    [Google Scholar]
  92. 92.  Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D et al. 2011. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9:484–95
    [Google Scholar]
  93. 93.  Tabah AA, Tardif K, Mansky LM 2014. Anti-HIV-1 activity of Trim 37. J. Gen. Virol. 95:960–67
    [Google Scholar]
  94. 94.  Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W 2008. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLOS Pathog 4:e16
    [Google Scholar]
  95. 95.  Vaysburd M, Watkinson RE, Cooper H, Reed M, O'Connell K et al. 2013. Intracellular antibody receptor TRIM21 prevents fatal viral infection. PNAS 110:12397–401
    [Google Scholar]
  96. 96.  Keeble AH, Khan Z, Forster A, James LC 2008. TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. PNAS 105:6045–50
    [Google Scholar]
  97. 97.  Rhodes DA, Trowsdale J 2007. TRIM21 is a trimeric protein that binds IgG Fc via the B30.2 domain. Mol. Immunol. 44:2406–14
    [Google Scholar]
  98. 98.  Rhodes DA, Isenberg DA 2017. TRIM21 and the function of antibodies inside cells. Trends Immunol 38:916–26
    [Google Scholar]
  99. 99.  Hauler F, Mallery DL, McEwan WA, Bidgood SR, James LC 2012. AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. PNAS 109:19733–38
    [Google Scholar]
  100. 100.  Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC 2010. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). PNAS 107:19985–90
    [Google Scholar]
  101. 101.  McEwan WA, Tam JCH, Watkinson RE, Bidgood SR, Mallery DL, James LC 2013. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 14:327–36
    [Google Scholar]
  102. 102.  Watkinson RE, McEwan WA, Tam JCH, Vaysburd M, James LC 2015. TRIM21 promotes cGAS and RIG-I sensing of viral genomes during infection by antibody-opsonized virus. PLOS Pathog 11:e1005253
    [Google Scholar]
  103. 103.  Bernardi R, Pandolfi PP 2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8:1006–16
    [Google Scholar]
  104. 104.  Chelbi-Alix MK, Quignon F, Pelicano L, Koken MHM, de Thé H 1998. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J. Virol. 72:1043–51
    [Google Scholar]
  105. 105.  Geoffroy MC, Chelbi-Alix MK 2011. Role of promyelocytic leukemia protein in host antiviral defense. J. Interferon Cytokine Res. 31:145–58
    [Google Scholar]
  106. 106.  Dutrieux J, Maarifi G, Portilho DM, Arhel NJ, Chelbi-Alix MK, Nisole S 2015. PML/TRIM19-dependent inhibition of retroviral reverse-transcription by Daxx. PLOS Pathog 11:e1005280
    [Google Scholar]
  107. 107.  Tavalai N, Stamminger T 2009. Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses 1:1240–64
    [Google Scholar]
  108. 108.  Reichelt M, Wang L, Sommer M, Perrino J, Nour AM et al. 2011. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLOS Pathog 7:e1001266
    [Google Scholar]
  109. 109.  Scherer M, Stamminger T 2016. Emerging role of PML nuclear bodies in innate immune signaling. J. Virol. 90:5850–54
    [Google Scholar]
  110. 110.  Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G 2017. TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J. Virol. 91:e00088–17
    [Google Scholar]
  111. 111.  Li MMH, Lau Z, Cheung P, Aguilar EG, Schneider WM et al. 2017. TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLOS Pathog 13:e1006145
    [Google Scholar]
  112. 112.  Li MMH, MacDonald MR, Rice CM 2015. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25:320–29
    [Google Scholar]
  113. 113.  Fu B, Wang L, Ding H, Schwamborn JC, Li S, Dorf ME 2015. TRIM32 senses and restricts influenza A virus by ubiquitination of PB1 polymerase. PLOS Pathog 11:e1004960
    [Google Scholar]
  114. 114.  Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ et al. 2017. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22:627–38
    [Google Scholar]
  115. 115.  Liu B, Li NL, Shen Y, Bao X, Fabrizio T et al. 2016. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza A and B viruses by impeding viral RNA synthesis. J. Virol. 90:4369–82
    [Google Scholar]
  116. 116.  Fan W, Wu M, Qian S, Zhou Y, Chen H et al. 2016. TRIM52 inhibits Japanese encephalitis virus replication by degrading the viral NS2A. Sci. Rep. 6:33698
    [Google Scholar]
  117. 117.  Wang J, Liu B, Wang N, Lee YM, Liu C, Li K 2011. TRIM56 is a virus- and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection. J. Virol. 85:3733–45
    [Google Scholar]
  118. 118.  Liu B, Li NL, Wang J, Shi PY, Wang T et al. 2014. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J. Virol. 88:13821–35
    [Google Scholar]
  119. 119.  Kane M, Zang TM, Rihn SJ, Zhang F, Kueck T et al. 2016. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20:392–405
    [Google Scholar]
  120. 120.  Wang S, Chen Y, Li C, Wu Y, Guo L et al. 2016. TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein. Sci. Rep. 6:32336
    [Google Scholar]
  121. 121.  Zhang S, Guo JT, Wu JZ, Yang G 2013. Identification and characterization of multiple TRIM proteins that inhibit hepatitis B virus transcription. PLOS ONE 8:e70001
    [Google Scholar]
  122. 122.  Deretic V, Saitoh T, Akira S 2013. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:722–37
    [Google Scholar]
  123. 123.  Levine B, Kroemer G 2008. Autophagy in the pathogenesis of disease. Cell 132:27–42
    [Google Scholar]
  124. 124.  Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F et al. 2017. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat. Microbiol. 2:1543–57
    [Google Scholar]
  125. 125.  Kimura T, Jain A, Choi SW, Mandell MA, Schroder K et al. 2015. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210:973
    [Google Scholar]
  126. 126.  Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T et al. 2014. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30:394–409
    [Google Scholar]
  127. 127.  Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S et al. 2012. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–34
    [Google Scholar]
  128. 128.  Imam S, Talley S, Nelson RS, Dharan A, O'Connor C et al. 2016. TRIM5α degradation via autophagy is not required for retroviral restriction. J. Virol. 90:3400–10
    [Google Scholar]
  129. 129.  Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC et al. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439–49
    [Google Scholar]
  130. 130.  Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA et al. 2012. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLOS Pathog 8:e1003059
    [Google Scholar]
  131. 131.  Hu Y, Li W, Gao T, Cui Y, Jin Y et al. 2017. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J. Virol. 91:e02143–16
    [Google Scholar]
  132. 132.  Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC et al. 2014. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J. Virol. 88:4572–85
    [Google Scholar]
  133. 133.  Scherer M, Klingl S, Sevvana M, Otto V, Schilling EM et al. 2014. Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions. PLOS Pathog 10:e1004512
    [Google Scholar]
  134. 134.  Schilling EM, Scherer M, Reuter N, Schweininger J, Muller YA, Stamminger T 2017. The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML de novo SUMOylation. J. Virol. 91:e02049–16
    [Google Scholar]
  135. 135.  Martínez F, Tang Q 2014. Identification of cellular proteins that interact with human cytomegalovirus immediate-early protein 1 by protein array assay. Viruses 6:89–105
    [Google Scholar]
  136. 136.  Sewatanon J, Ling PD 2013. Murine gammaherpesvirus 68 ORF75c contains ubiquitin E3 ligase activity and requires PML SUMOylation but not other known cellular PML regulators, CK2 and E6AP, to mediate PML degradation. Virology 440:140–49
    [Google Scholar]
  137. 137.  Conwell SE, White AE, Harper JW, Knipe DM 2015. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0. J. Virol. 89:220–29
    [Google Scholar]
  138. 138.  Bharaj P, Wang YE, Dawes BE, Yun TE, Park A et al. 2016. The matrix protein of Nipah virus targets the E3-ubiquitin ligase TRIM6 to inhibit the IKKε kinase-mediated type-I IFN antiviral response. PLOS Pathog 12:e1005880
    [Google Scholar]
  139. 139.  Manocha GD, Mishra R, Sharma N, Kumawat KL, Basu A, Singh SK 2014. Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. J. Neuroinflamm. 11:24
    [Google Scholar]
  140. 140.  Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JML, Pisanelli G et al. 2014. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16:314–27
    [Google Scholar]
  141. 141.  Bharaj P, Atkins C, Luthra P, Giraldo MI, Dawes BE et al. 2017. The host E3-ubiquitin ligase TRIM6 ubiquitinates the Ebola virus VP35 protein and promotes virus replication. J. Virol. 91:e00833–17
    [Google Scholar]
  142. 142.  Poole E, King CA, Sinclair JH, Alcami A 2006. The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J 25:4390–99
    [Google Scholar]
  143. 143.  Poole E, Groves I, Macdonald A, Pang Y, Alcami A, Sinclair J 2009. Identification of TRIM23 as a cofactor involved in the regulation of NF-κB by human cytomegalovirus. J. Virol. 83:3581–90
    [Google Scholar]
  144. 144.  Kwon SC, Yi H, Eichelbaum K, Föhr S, Fischer B et al. 2013. The RNA-binding protein repertoire of embryonic stem cells. Nat. Struct. Mol. Biol. 20:1122–30
    [Google Scholar]
  145. 145.  Schwamborn JC, Berezikov E, Knoblich JA 2009. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136:913–25
    [Google Scholar]
  146. 146.  Li S, Wang L, Fu B, Berman MA, Diallo A, Dorf ME 2014. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. PNAS 111:6970–75
    [Google Scholar]
  147. 147.  Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA et al. 2009. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11:1411–20
    [Google Scholar]
  148. 148.  Chang HM, Martinez NJ, Thornton JE, Hagan JP, Nguyen KD, Gregory RI 2012. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat. Commun. 3:923
    [Google Scholar]
  149. 149.  Elabd S, Meroni G, Blattner C 2016. TRIMming p53’s anticancer activity. Oncogene 35:5577–84
    [Google Scholar]
  150. 150.  Crawford LJ, Johnston CK, Irvine AE 2018. TRIM proteins in blood cancers. J. Cell Commun. Signal. 12:21–29
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043323
Loading
/content/journals/10.1146/annurev-virology-092917-043323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error