1932

Abstract

Coronaviruses have frequently expanded their host range in recent history, with two events resulting in severe disease outbreaks in human populations. Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2003 in Southeast Asia and rapidly spread around the world before it was controlled by public health intervention strategies. The 2012 Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak represents another prime example of virus emergence from a zoonotic reservoir. Here, we review the current knowledge of coronavirus cross-species transmission, with particular focus on MERS-CoV. MERS-CoV is still circulating in the human population, and the mechanisms governing its cross-species transmission have been only partially elucidated, highlighting a need for further investigation. We discuss biochemical determinants mediating MERS-CoV host cell permissivity, including virus spike interactions with the MERS-CoV cell surface receptor dipeptidyl peptidase 4 (DPP4), and evolutionary mechanisms that may facilitate host range expansion, including recombination, mutator alleles, and mutational robustness. Understanding these mechanisms can help us better recognize the threat of emergence for currently circulating zoonotic strains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-055029
2015-11-09
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/2/1/annurev-virology-100114-055029.html?itemId=/content/journals/10.1146/annurev-virology-100114-055029&mimeType=html&fmt=ahah

Literature Cited

  1. Li W, Shi Z, Yu M, Ren W, Smith C. 1.  et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–79 [Google Scholar]
  2. Wang W, Lin XD, Guo WP, Zhou RH, Wang MR. 2.  et al. 2015. Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virology 474:19–27 [Google Scholar]
  3. Woo PCY, Lau SKP, Huang Y, Yuen KY. 3.  2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 234:1117–27 [Google Scholar]
  4. Graham RL, Donaldson EF, Baric RS. 4.  2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11:836–48 [Google Scholar]
  5. Perlman S, Netland J. 5.  2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7:439–50 [Google Scholar]
  6. Steinhauer DA, Domingo E, Holland JJ. 6.  1992. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:281–88 [Google Scholar]
  7. Woolhouse MEJ, Gowtage-Sequeria S. 7.  2005. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11:1842–47 [Google Scholar]
  8. Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 8.  2012. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. PNAS 109:9372–77 [Google Scholar]
  9. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C. 9.  et al. 2006. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. PNAS 103:5108–13 [Google Scholar]
  10. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E. 10.  et al. 2010. Infidelity of SARS-CoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLOS Pathog. 6:e1000896 [Google Scholar]
  11. Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 11.  2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol. 81:12135–44 [Google Scholar]
  12. Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. 12.  2012. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat. Med. 18:1820–26 [Google Scholar]
  13. Lauber C, Goeman JJ, Parquet MdC, Nga PT, Snijder EJ. 13.  et al. 2013. The footprint of genome architecture in the largest genome expansion in RNA viruses. PLOS Pathog. 9:e1003500 [Google Scholar]
  14. Worobey M, Holmes EC. 14.  1999. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80:2535–43 [Google Scholar]
  15. Zeng QH, Langereis MA, van Vliet ALW, Huizinga EG, de Groot RJ. 15.  2008. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. PNAS 105:9065–69 [Google Scholar]
  16. Sutton G, Fry E, Carter L, Sainsbury S, Walter T. 16.  et al. 2004. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12:341–53 [Google Scholar]
  17. Ziebuhr J, Thiel V, Gorbalenya AE. 17.  2001. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J. Biol. Chem. 276:33220–32 [Google Scholar]
  18. Shukla A, Hilgenfeld R. 18.  2015. Acquisition of new protein domains by coronaviruses: analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus. Virus Genes 50:29–38 [Google Scholar]
  19. Vijgen L, Keyaerts E, Moes E, Thoelen I, Wollants E. 19.  et al. 2005. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79:1595–604 [Google Scholar]
  20. Lau SK, Woo PC, Li KS, Tsang AK, Fan RY. 20.  et al. 2015. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports murine origin of Betacoronavirus 1 with implications on the ancestor of Betacoronavirus lineage A. J. Virol. 89:3076–92 [Google Scholar]
  21. Alekseev KP, Vlasova AN, Jung K, Hasoksuz M, Zhang X. 21.  et al. 2008. Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. J. Virol. 82:12422–31 [Google Scholar]
  22. Hasoksuz M, Alekseev K, Vlasova A, Zhang X, Spiro D. 22.  et al. 2007. Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe. J. Virol. 81:4981–90 [Google Scholar]
  23. Erles K, Toomey C, Brooks HW, Brownlie J. 23.  2003. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology 310:216–23 [Google Scholar]
  24. Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D. 24.  et al. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84:11336–49 [Google Scholar]
  25. Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH. 25.  et al. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80:7481–90 [Google Scholar]
  26. Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB. 26.  2010. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 84:13004–18 [Google Scholar]
  27. Ge XY, Li Y, Yang XL, Zhang HJ, Zhou P. 27.  et al. 2012. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86:4620–30 [Google Scholar]
  28. Wu ZQ, Ren XW, Yang L, Hu YF, Yang J. 28.  et al. 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J. Virol. 86:10999–1012 [Google Scholar]
  29. Drexler JF, Corman VM, Drosten C. 29.  2014. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101:45–56 [Google Scholar]
  30. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torrelio CM. 30.  et al. 2013. Coronaviruses in bats from Mexico. J. Gen. Virol. 94:1028–38 [Google Scholar]
  31. Goes LGB, Ruvalcaba SG, Campos AA, Queiroz LH, de Carvalho C. 31.  et al. 2013. Novel bat coronaviruses, Brazil and Mexico. Emerg. Infect. Dis. 19:1711–13 [Google Scholar]
  32. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR. 32.  et al. 2013. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19:1697–99 [Google Scholar]
  33. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM. 33.  et al. 2013. A strategy to estimate unknown viral diversity in mammals. mBio 4:e00598–13 [Google Scholar]
  34. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. 34.  2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19:531–45 [Google Scholar]
  35. Dobson AP. 35.  2005. What links bats to emerging infectious diseases?. Science 310:628–29 [Google Scholar]
  36. Huynh J, Li S, Yount B, Smith A, Sturges L. 36.  et al. 2012. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 86:12816–25 [Google Scholar]
  37. Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A. 37.  et al. 2009. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 15:1377–84 [Google Scholar]
  38. Cherry JD. 38.  2004. The chronology of the 2002–2003 SARS mini pandemic. Paediatr. Respir. Rev. 5:262–69 [Google Scholar]
  39. Demogines A, Farzan M, Sawyer SL. 39.  2012. Evidence for ACE2-utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. J. Virol. 86:6350–53 [Google Scholar]
  40. Wang LF, Eaton BT. 40.  2007. Bats, civets and the emergence of SARS. Curr. Top. Microbiol. Immunol. 315:325–44 [Google Scholar]
  41. Ren W, Qu X, Li W, Han Z, Yu M. 41.  et al. 2008. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J. Virol. 82:1899–907 [Google Scholar]
  42. Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D. 42.  et al. 2015. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282:20142124 [Google Scholar]
  43. 43. WHO (World Health Organ.) 2015. Middle East respiratory syndrome coronavirus (MERS-CoV)—Saudi Arabia Jun. 11, WHO, Geneva. http://www.who.int/csr/don/11-june-2015-mers-saudi-arabia/en/ [Google Scholar]
  44. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS. 44.  et al. 2012. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 3:e00473–12 [Google Scholar]
  45. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA. 45.  et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–54 [Google Scholar]
  46. Wang Q, Qi J, Yuan Y, Xuan Y, Han P. 46.  et al. 2014. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 16:328–37 [Google Scholar]
  47. Yang Y, Du LY, Liu C, Wang LL, Ma CQ. 47.  et al. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. PNAS 111:12516–21 [Google Scholar]
  48. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V. 48.  et al. 2013. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 19:1819–23 [Google Scholar]
  49. Cui J, Eden JS, Holmes EC, Wang LF. 49.  2013. Adaptive evolution of bat dipeptidyl peptidase 4 (DPP4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virol. J. 10:304 [Google Scholar]
  50. Reusken CBEM, Haagmans BL, Müller MA, Gutierrez C, Godeke GJ. 50.  et al. 2013. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 13:859–66 [Google Scholar]
  51. Gossner C, Danielson N, Gervelmeyer A, Berthe F, Faye B. 51.  et al. 2014. Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection. Zoonoses Public Health. doi: 10.1111/zph.12171
  52. Hemida MG, Al-Naeem A, Perera RAPM, Chin AWH, Poon LLM, Peiris M. 52.  2015. Lack of Middle East respiratory syndrome coronavirus transmission from infected camels. Emerg. Infect. Dis. 21:699–701 [Google Scholar]
  53. Müller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A. 53.  et al. 2015. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet. Infect. Dis. 15:559–64 [Google Scholar]
  54. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M. 54.  et al. 2014. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14:140–45 [Google Scholar]
  55. Briese T, Mishra N, Jain K, Zalmout IS, Jabado OJ. 55.  et al. 2014. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. mBio 5:e01146–14 [Google Scholar]
  56. Hemida MG, Chu DK, Poon LL, Perera RA, Alhammadi MA. 56.  et al. 2014. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg. Infect. Dis. 20:1231–34 [Google Scholar]
  57. Boonacker E, Van Noorden CJ. 57.  2003. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell Biol. 82:53–73 [Google Scholar]
  58. de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T. 58.  et al. 2013. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLOS ONE 8:e69127 [Google Scholar]
  59. Barlan A, Zhao J, Sarkar MK, Li K, McCray PB Jr. 59.  2014. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J. Virol. 88:4953–61 [Google Scholar]
  60. Eckerle I, Corman VM, Müller MA, Lenk M, Ulrich RG, Drosten C. 60.  2014. Replicative capacity of MERS coronavirus in livestock cell lines. Emerg. Infect. Dis. 20:276–79 [Google Scholar]
  61. Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T. 61.  et al. 2014. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J. Virol. 88:5195–99 [Google Scholar]
  62. Coleman CM, Matthews KL, Goicochea L, Frieman MB. 62.  2014. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J. Gen. Virol. 95:408–12 [Google Scholar]
  63. Raj VS, Smits SL, Provacia LB, van den Brand JM, Wiersma L. 63.  et al. 2014. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus. J. Virol. 88:1834–38 [Google Scholar]
  64. van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S. 64.  et al. 2014. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. Virol. 88:9220–32 [Google Scholar]
  65. Lu G, Hu Y, Wang Q, Qi J, Gao F. 65.  et al. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500:227–31 [Google Scholar]
  66. Wang N, Shi X, Jiang L, Zhang S, Wang D. 66.  et al. 2013. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23:986–93 [Google Scholar]
  67. Zhao JC, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C. 67.  et al. 2014. Rapid generation of a mouse model for Middle East respiratory syndrome. PNAS 111:4970–75 [Google Scholar]
  68. Agrawal AS, Garron T, Tao X, Peng BH, Wakamiya M. 68.  et al. 2015. Generation of transgenic mouse model of Middle East respiratory syndrome-coronavirus infection and disease. J. Virol. 89:3659–70 [Google Scholar]
  69. Takasawa W, Ohnuma K, Hatano R, Endo Y, Dang NH, Morimoto C. 69.  2010. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines. Biochem. Biophys. Res. Commun. 401:7–12 [Google Scholar]
  70. Song W, Wang Y, Wang N, Wang D, Guo J. 70.  et al. 2014. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry. Virology 471–7349–53
  71. Peck KM, Cockrell AS, Yount BL, Scobey T, Baric RS, Heise MT. 71.  2015. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J. Virol. 89:4696–99 [Google Scholar]
  72. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ. 72.  et al. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634–43 [Google Scholar]
  73. Wentworth DE, Holmes KV. 73.  2001. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J. Virol. 75:9741–52 [Google Scholar]
  74. Millet JK, Whittaker GR. 74.  2015. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202:120–34 [Google Scholar]
  75. Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A. 75.  et al. 2013. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J. Virol. 87:5502–11 [Google Scholar]
  76. Shirato K, Kawase M, Matsuyama S. 76.  2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87:12552–61 [Google Scholar]
  77. Millet JK, Whittaker GR. 77.  2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. PNAS 111:15214–19 [Google Scholar]
  78. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ. 78.  et al. 2014. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLOS Pathog. 10:e1004502 [Google Scholar]
  79. Woolhouse MEJ. 79.  2002. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 10:S3–7 [Google Scholar]
  80. deFilippis VR, Villarreal LP. 80.  2000. An introduction to the evolutionary ecology of viruses. Viral Ecology CJ Hurst 125–208 San Diego, CA: Academic [Google Scholar]
  81. Müller MA, Raj VS, Muth D, Meyer B, Kallies S. 81.  et al. 2012. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio 3:e00515–12 [Google Scholar]
  82. Ohnuma K, Haagmans BL, Hatano R, Raj VS, Mou H. 82.  et al. 2013. Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. J. Virol. 87:13892–99 [Google Scholar]
  83. de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F. 83.  et al. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. PNAS 110:16598–603 [Google Scholar]
  84. Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A. 84.  2014. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLOS Pathog. 10:e1004250 [Google Scholar]
  85. Baric RS, Sullivan E, Hensley L, Yount B, Chen W. 85.  1999. Persistent infection promotes cross-species transmissibility of mouse hepatitis virus. J. Virol. 73:638–49 [Google Scholar]
  86. McRoy WC, Baric RS. 86.  2008. Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion. J. Virol. 82:1414–24 [Google Scholar]
  87. Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R. 87.  et al. 2008. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J. Virol. 82:2274–85 [Google Scholar]
  88. Wu KL, Peng GQ, Wilken M, Geraghty RJ, Li F. 88.  2012. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem. 287:8904–11 [Google Scholar]
  89. Roberts A, Deming D, Paddock CD, Cheng A, Yount B. 89.  et al. 2007. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLOS Pathog. 3:e5 [Google Scholar]
  90. de Haan CAM, Li Z, Lintelo ET, Bosch BJ, Haijema BJ, Rottier PJM. 90.  2005. Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J. Virol. 79:14451–56 [Google Scholar]
  91. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM. 91.  et al. 1999. Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29:1768–78 [Google Scholar]
  92. Cai YY, Yu SQ, Postnikova EN, Mazur S, Bernbaum JG. 92.  et al. 2014. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. PLOS ONE 9:e112060 [Google Scholar]
  93. Xia S, Liu Q, Wang Q, Sun Z, Su S. 93.  et al. 2014. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194:200–10 [Google Scholar]
  94. Shackelton LA, Parrish CR, Truyen U, Holmes EC. 94.  2005. High rate of viral evolution associated with the emergence of carnivore parvovirus. PNAS 102:379–84 [Google Scholar]
  95. Robertson DL, Sharp PM, McCutchan FE, Hahn BH. 95.  1995. Recombination in HIV-1. Nature 374:124–26 [Google Scholar]
  96. Scholtissek C, Koennecke I, Rott R. 96.  1978. Host range recombinants of fowl plague (influenza A) virus. Virology 91:79–85 [Google Scholar]
  97. Maeda S, Kamita SG, Kondo A. 97.  1993. Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. J. Virol. 67:6234–38 [Google Scholar]
  98. Schoelz JE, Wintermantel WM. 98.  1993. Expansion of viral host range through complementation and recombination in transgenic plants. Plant Cell 5:1669–79 [Google Scholar]
  99. Baric RS, Fu K, Schaad MC, Stohlman SA. 99.  1990. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology 177:646–56 [Google Scholar]
  100. Holmes KV. 100.  2003. SARS-associated coronavirus. N. Engl. J. Med. 348:1948–51 [Google Scholar]
  101. Pyrc K, Dijkman R, Deng L, Jebbink MF, Ross HA. 101.  et al. 2006. Mosaic structure of human coronavirus NL63, one thousand years of evolution. J. Mol. Biol. 364:964–73 [Google Scholar]
  102. Jia W, Karaca K, Parrish CR, Naqi SA. 102.  1995. A novel variant of avian infectious-bronchitis virus resulting from recombination among 3 different strains. Arch. Virol. 140:259–71 [Google Scholar]
  103. Rest JS, Mindell DP. 103.  2003. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect. Genet. Evol. 3:219–25 [Google Scholar]
  104. Li W, Wong SK, Li F, Kuhn JH, Huang IC. 104.  et al. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80:4211–19 [Google Scholar]
  105. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A. 105.  et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300:1399–404 [Google Scholar]
  106. Stavrinides J, Guttman DS. 106.  2004. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 78:76–82 [Google Scholar]
  107. Holmes EC, Rambaut A. 107.  2004. Viral evolution and the emergence of SARS coronavirus. Philos. Trans. R. Soc. B 359:1059–65 [Google Scholar]
  108. Lau SK, Li KS, Huang Y, Shek CT, Tse H. 108.  et al. 2010. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84:2808–19 [Google Scholar]
  109. Sanjuan R, Moya A, Elena SF. 109.  2004. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. PNAS 101:8396–401 [Google Scholar]
  110. Stern A, Bianco S, Yeh MT, Wright C, Butcher K. 110.  et al. 2014. Costs and benefits of mutational robustness in RNA viruses. Cell Rep. 8:1026–36 [Google Scholar]
  111. Bull JJ, Sanjuan R, Wilke CO. 111.  2007. Theory of lethal mutagenesis for viruses. J. Virol. 81:2930–39 [Google Scholar]
  112. Sierra S, Davila M, Lowenstein PR, Domingo E. 112.  2000. Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J. Virol. 74:8316–23 [Google Scholar]
  113. Crotty S, Cameron CE, Andino R. 113.  2001. RNA virus error catastrophe: direct molecular test by using ribavirin. PNAS 98:6895–900 [Google Scholar]
  114. Korboukh VK, Lee CA, Acevedo A, Vignuzzi M, Xiao Y. 114.  et al. 2014. RNA virus population diversity, an optimum for maximal fitness and virulence. J. Biol. Chem. 289:29531–44 [Google Scholar]
  115. Sanjuan R. 115.  2012. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLOS Pathog. 8:e1002685 [Google Scholar]
  116. Shaver AC, Dombrowski PG, Sweeney JY, Treis T, Zappala RM, Sniegowski PD. 116.  2002. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics 162:557–66 [Google Scholar]
  117. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A. 117.  2000. The evolution of mutation rates: separating causes from consequences. BioEssays 22:1057–66 [Google Scholar]
  118. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. 118.  1997. Role of mutator alleles in adaptive evolution. Nature 387:700–2 [Google Scholar]
  119. Tanaka MM, Bergstrom CT, Levin BR. 119.  2003. The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 164:843–54 [Google Scholar]
  120. Gutierrez-Rivas M, Menendez-Arias L. 120.  2001. A mutation in the primer grip region of HIV-1 reverse transcriptase that confers reduced fidelity of DNA synthesis. Nucleic Acids Res. 29:4963–72 [Google Scholar]
  121. Suarez P, Valcarcel J, Ortin J. 121.  1992. Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J. Virol. 66:2491–94 [Google Scholar]
  122. Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED. 122.  et al. 2013. Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J. Biol. Chem. 288:32753–65 [Google Scholar]
  123. Gnadig NF, Beaucourt S, Campagnola G, Borderia AV, Sanz-Ramos M. 123.  et al. 2012. Coxsackievirus B3 mutator strains are attenuated in vivo. PNAS 109:E2294–303 [Google Scholar]
  124. Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB. 124.  et al. 2014. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLOS Pathog. 10:e1003877 [Google Scholar]
  125. Xie X, Wang H, Zeng J, Li C, Zhou G. 125.  et al. 2014. Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated. Arch. Virol. 159:2641–50 [Google Scholar]
  126. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 126.  1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152–79 [Google Scholar]
  127. Ludwig S, Stitz L, Planz O, Van H, Fitch WM, Scholtissek C. 127.  1995. European swine virus as a possible source for the next influenza pandemic?. Virology 212:555–61 [Google Scholar]
  128. Stech J, Xiong X, Scholtissek C, Webster RG. 128.  1999. Independence of evolutionary and mutational rates after transmission of avian influenza viruses to swine. J. Virol. 73:1878–84 [Google Scholar]
  129. Bull RA, Eden JS, Rawlinson WD, White PA. 129.  2010. Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLOS Pathog. 6:e1000831 [Google Scholar]
  130. Cotten M, Watson SJ, Zumla AI, Makhdoom HQ, Palser AL. 130.  et al. 2014. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio 5:e01062–13 [Google Scholar]
  131. Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R. 131.  et al. 2006. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antivir. Res. 71:53–63 [Google Scholar]
  132. Chiou HE, Liu CL, Buttrey MJ, Kuo HP, Liu HW. 132.  et al. 2005. Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest 128:263–72 [Google Scholar]
  133. Smith EC, Blanc H, Vignuzzi M, Denison MR. 133.  2013. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLOS Pathog. 9:e1003565 [Google Scholar]
  134. Sanjuan R, Cuevas JM, Furio V, Holmes EC, Moya A. 134.  2007. Selection for robustness in mutagenized RNA viruses. PLOS Genet. 3:e93 [Google Scholar]
  135. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C. 135.  2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–33 [Google Scholar]
  136. Koelle K, Cobey S, Grenfell B, Pascual M. 136.  2006. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314:1898–903 [Google Scholar]
  137. Lauring AS, Frydman J, Andino R. 137.  2013. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11:327–36 [Google Scholar]
  138. Elena SF, Carrasco P, Daros JA, Sanjuan R. 138.  2006. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 7:168–73 [Google Scholar]
  139. Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A. 139.  et al. 2013. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat. Med. 19:1313–17 [Google Scholar]
  140. Graci JD, Gnadig NF, Galarraga JE, Castro C, Vignuzzi M, Cameron CE. 140.  2012. Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis. J. Virol. 86:2869–73 [Google Scholar]
  141. Joseph SB, Peck KM, Burch CL. 141.  2014. Dominance effects of deleterious and beneficial mutations in a single gene of the RNA virus ϕ6. PLOS ONE 9:e97717 [Google Scholar]
  142. Cicin-Sain L, Podlech R, Messerle M, Reddehase MJ, Koszinowski UH. 142.  2005. Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J. Virol. 79:9492–502 [Google Scholar]
  143. Moreno IM, Malpica JM, Rodriguez-Cerezo E, Garcia-Arenal F. 143.  1997. A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation. J. Virol. 71:9157–62 [Google Scholar]
  144. Kim KH, Narayanan K, Makino S. 144.  1997. Assembled coronavirus from complementation of two defective interfering RNAs. J. Virol. 71:3922–31 [Google Scholar]
  145. Stalcup RP, Baric RS, Leibowitz JL. 145.  1998. Genetic complementation among three panels of mouse hepatitis virus gene 1 mutants. Virology 241:112–21 [Google Scholar]
  146. Draghi JA, Parsons TL, Wagner GP, Plotkin JB. 146.  2010. Mutational robustness can facilitate adaptation. Nature 463:353–55 [Google Scholar]
  147. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS. 147.  et al. 2013. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. PNAS 110:16157–62 [Google Scholar]
  148. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB. 148.  et al. 2003. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. PNAS 100:12995–3000 [Google Scholar]
  149. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 149.  2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307–21 [Google Scholar]
  150. Zhang H, Gao S, Lercher MJ, Hu S, Chen WH. 150.  2012. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 40:W569–72 [Google Scholar]
  151. Zhang Y. 151.  2008. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 9:40 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-055029
Loading
/content/journals/10.1146/annurev-virology-100114-055029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error