1932

Abstract

Viruses are completely dependent upon cellular machinery to support replication and have therefore developed strategies to co-opt cellular processes to optimize infection and counter host immune defenses. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode a relatively small number of genes. Viruses with limited genetic content often encode multifunctional proteins that function at multiple stages of the viral replication cycle. In this review, we discuss the functions of HIV-1 regulatory (Tat and Rev) and accessory (Vif, Vpr, Vpu, and Nef) proteins. Each of these proteins has a highly conserved primary activity; however, numerous additional activities have been attributed to these viral proteins. We explore the possibility that HIV-1 proteins leverage their multifunctional nature to alter host transcriptional networks to elicit a diverse set of cellular responses. Although these transcriptional effects appear to benefit the virus, it is not yet clear whether they are strongly selected for during viral evolution or are a ripple effect from the primary function. As our detailed knowledge of these viral proteins improves, we will undoubtedly uncover how the multifunctional nature of these HIV-1 regulatory and accessory proteins, and in particular their transcriptional functions, work to drive viral pathogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041654
2017-09-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041654.html?itemId=/content/journals/10.1146/annurev-virology-101416-041654&mimeType=html&fmt=ahah

Literature Cited

  1. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K. 1.  et al. 2008. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455:661–64 [Google Scholar]
  2. Chen BK, Feinberg MB, Baltimore D. 2.  1997. The κB sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth. J. Virol. 71:5495–504 [Google Scholar]
  3. Lassen KG, Bailey JR, Siliciano RF. 3.  2004. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J. Virol. 78:9105–14 [Google Scholar]
  4. Feinberg MB, Baltimore D, Frankel AD. 4.  1991. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. PNAS 88:4045–49 [Google Scholar]
  5. Berkhout B, Silverman RH, Jeang KT. 5.  1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–82 [Google Scholar]
  6. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. 6.  1998. A novel CDK9-associated c-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–62 [Google Scholar]
  7. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S. 7.  et al. 2010. c-Myc regulates transcriptional pause release. Cell 141:432–45 [Google Scholar]
  8. Peterlin BM, Price DH. 8.  2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297–305 [Google Scholar]
  9. Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH. 9.  et al. 1998. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12:3512–27 [Google Scholar]
  10. Nguyen VT, Kiss T, Michels AA, Bensaude O. 10.  2001. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–25 [Google Scholar]
  11. Yang Z, Zhu Q, Luo K, Zhou Q. 11.  2001. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–22 [Google Scholar]
  12. Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F. 12.  et al. 2004. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23:2608–19 [Google Scholar]
  13. Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH. 13.  2007. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res 35:4347–58 [Google Scholar]
  14. Barboric M, Yik JHN, Czudnochowski N, Yang Z, Chen R. 14.  et al. 2007. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 35:2003–12 [Google Scholar]
  15. D'Orso I, Frankel AD. 15.  2010. RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat. Struct. Mol. Biol. 17:815–21 [Google Scholar]
  16. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y. 16.  et al. 2010. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38:439–51 [Google Scholar]
  17. He N, Liu M, Hsu J, Xue Y, Chou S. 17.  et al. 2010. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38:428–38 [Google Scholar]
  18. Lu H, Li Z, Xue Y, Schulze-Gahmen U, Johnson JR. 18.  et al. 2014. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. PNAS 111:E15–24 [Google Scholar]
  19. Schulze-Gahmen U, Lu H, Zhou Q, Alber T. 19.  2014. AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter. eLife 2014:1–13 [Google Scholar]
  20. Izmailova E, Bertley FM, Huang Q, Makori N, Miller CJ. 20.  et al. 2003. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat. Med. 9:191–97 [Google Scholar]
  21. Frankel AD, Pabo CO. 21.  1988. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–93 [Google Scholar]
  22. Rayne F, Debaisieux S, Yezid H, Lin Y-L, Mettling C. 22.  et al. 2010. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 29:1348–62 [Google Scholar]
  23. Kim N, Kukkonen S, Gupta S, Aldovini A. 23.  2010. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLOS Pathog 6:e1001103 [Google Scholar]
  24. Reeder JE, Kwak YT, McNamara RP, Forst CV, D'Orso I. 24.  2015. HIV Tat controls RNA polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. eLife 4:1–44 [Google Scholar]
  25. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. 25.  2010. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465:747–51 [Google Scholar]
  26. Yang Z, Yik JHN, Chen R, He N, Moon KJ. 26.  et al. 2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19:535–45 [Google Scholar]
  27. Kanazawa S, Okamoto T, Peterlin BM. 27.  2000. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12:61–70 [Google Scholar]
  28. Li Z, Guo J, Wu Y, Zhou Q. 28.  2013. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41:277–87 [Google Scholar]
  29. Mann DA, Frankel AD. 29.  1991. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10:1733–39 [Google Scholar]
  30. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA. 30.  et al. 2013. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. PNAS 110:13588–93 [Google Scholar]
  31. Li CJ, Ueda Y, Shi B, Borodyansky L, Huang L. 31.  et al. 1997. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. PNAS 94:8116–20 [Google Scholar]
  32. Fernandes J, Faust TB, Frankel AD. 32.  2016. Functional segregation of overlapping genes in HIV. Cell 167:1762–66.e12 [Google Scholar]
  33. Pollard VW, Malim MH. 33.  1998. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52:491–532 [Google Scholar]
  34. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR. 34.  1989. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–57 [Google Scholar]
  35. Bai Y, Tambe A, Zhou K, Doudna JA. 35.  2014. RNA-guided assembly of Rev-RRE nuclear export complexes. eLife 3:e03656 [Google Scholar]
  36. Daugherty MD, Booth DS, Jayaraman B, Cheng Y, Frankel AD. 36.  2010. HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. PNAS 107:12481–86 [Google Scholar]
  37. Jayaraman B, Crosby DC, Homer C, Ribeiro I, Mavor D, Frankel AD. 37.  2014. RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex. eLife 3:e04120 [Google Scholar]
  38. Pond SJK, Ridgeway WK, Robertson R, Wang J, Millar DP. 38.  2009. HIV-1 Rev protein assembles on viral RNA one molecule at a time. PNAS 106:1404–8 [Google Scholar]
  39. Rausch JW, le Grice SFJ. 39.  2015. HIV Rev assembly on the Rev response element (RRE): a structural perspective. Viruses 7:3053–75 [Google Scholar]
  40. Fornerod M, Ohno M, Yoshida M, Mattaj IW. 40.  1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–60 [Google Scholar]
  41. Booth DS, Cheng Y, Frankel AD. 41.  2014. The export receptor CRM1 forms a dimer to promote nuclear export of HIV RNA. eLife 3:e04121 [Google Scholar]
  42. Felber BK, Drysdale CM, Pavlakis GN. 42.  1990. Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J. Virol. 64:3734–41 [Google Scholar]
  43. Lata S, Ali A, Sood V, Raja R, Banerjea AC. 43.  2015. HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (nqo1). Nat. Commun. 6:7244 [Google Scholar]
  44. Asher G, Tsvetkov P, Kahana C. 44.  2005. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19:316–21 [Google Scholar]
  45. Larue RS, Lengyel J, Jónsson SR, Andrésdóttir V, Harris RS. 45.  2010. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol. 84:8193–201 [Google Scholar]
  46. Sheehy AM, Gaddis NC, Choi JD, Malim MH. 46.  2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–50 [Google Scholar]
  47. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK. 47.  et al. 2003. DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–9 [Google Scholar]
  48. Yu X, Yu Y, Liu B, Luo K, Kong W. 48.  et al. 2003. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–60 [Google Scholar]
  49. Sheehy AM, Gaddis NC, Malim MH. 49.  2003. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9:1404–7 [Google Scholar]
  50. Jäger S, Kim DY, Hultquist JF, Shindo K, LaRue RS. 50.  et al. 2011. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481:371–75 [Google Scholar]
  51. Zhang W, Du J, Evans SL, Yu Y, Yu X-F. 51.  2012. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481:376–69 [Google Scholar]
  52. Guo Y, Dong L, Qiu X, Wang Y, Zhang B. 52.  et al. 2014. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–33 [Google Scholar]
  53. Hultquist JF, Binka M, LaRue RS, Simon V, Harris RS. 53.  2012. Vif proteins of human and simian immunodeficiency viruses require cellular CBFB to degrade APOBEC3 restriction factors. J. Virol. 86:2874–77 [Google Scholar]
  54. Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S. 54.  et al. 2013. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol. Cell 49:632–44 [Google Scholar]
  55. Miyagi E, Kao S, Yedavalli V, Strebel K. 55.  2014. CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G. J. Virol. 88:4839–52 [Google Scholar]
  56. Kane JR, Stanley DJ, Hultquist JF, Johnson JR, Mietrach N. 56.  et al. 2015. Lineage-specific viral hijacking of non-canonical E3 ubiquitin ligase cofactors in the evolution of Vif anti-APOBEC3 activity. Cell Rep 11:1236–50 [Google Scholar]
  57. Salter JD, Morales GA, Smith HC. 57.  2014. Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem. Sci. 39:373–80 [Google Scholar]
  58. Rose KM, Marin M, Kozak SL, Kabat D. 58.  2004. The viral infectivity factor (Vif) of HIV-1 unveiled. Trends Mol. Med. 10:291–97 [Google Scholar]
  59. Harris RS, Liddament MT. 59.  2004. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4:868–77 [Google Scholar]
  60. Hultquist JF, Harris RS. 60.  2009. Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol 4:605 [Google Scholar]
  61. Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T. 61.  et al. 2001. Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 20:723–33 [Google Scholar]
  62. Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M. 62.  et al. 2001. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFβ. Cell 104:755–67 [Google Scholar]
  63. Klase Z, Yedavalli VS, Houzet L, Perkins M, Maldarelli F. 63.  et al. 2014. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA. PLOS Pathog 10:e1003997 [Google Scholar]
  64. Anderson BD, Harris RS. 64.  2015. Transcriptional regulation of APOBEC3 antiviral immunity through the CBF-β/RUNX axis. Sci. Adv. 1:e1500296 [Google Scholar]
  65. Hultquist JF, McDougle RM, Anderson BD, Harris RS. 65.  2012. HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces. AIDS Res. Hum. Retrovir. 28:1543–51 [Google Scholar]
  66. Greenwood EJ, Matheson NJ, Wals K, van den Boomen DJ, Antrobus R. 66.  et al. 2016. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants. eLife p5:e18296 [Google Scholar]
  67. Strebel K, Klimkait T, Martin M. 67.  1988. A novel gene of HIV-1, Vpu, and its 16-kilodalton product. Science 241:1221–23 [Google Scholar]
  68. Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA. 68.  1988. Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–34 [Google Scholar]
  69. Malim MH, Emerman M, An P, Duggal P, Wang LH. 69.  et al. 2008. HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3:388–98 [Google Scholar]
  70. Matsuda Z, Chou M-J, Matsuda M, Huang J-H, Chen Y-M. 70.  et al. 1988. Human immunodeficiency virus type 1 has an additional coding sequence in the central region of the genome. PNAS 85:6968–72 [Google Scholar]
  71. Terwilliger EF, Cohen EA, Lu Y, Sodroski JG, Haseltine WA. 71.  1989. Functional role of human immunodeficiency virus type 1. vpu. Microbiology 86:5163–67 [Google Scholar]
  72. Neil SJ, Zang T, Bieniasz PD. 72.  2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–30 [Google Scholar]
  73. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R. 73.  et al. 2008. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–52 [Google Scholar]
  74. Willey RL, Maldarelli F, Martin MA, Strebel K. 74.  1992. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J. Virol. 66:7193–200 [Google Scholar]
  75. Ewart GD, Sutherland T, Gage PW, Cox GB, Curtin J. 75.  1996. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J. Virol. 70:7108–15 [Google Scholar]
  76. Schubert U, Ferrer-Montiel AV, Oblatt-Montal M, Henklein P, Strebel K, Montal M. 76.  1996. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398:12–18 [Google Scholar]
  77. Kerkau T, Bacik I, Bennink JR, Yewdell JW, Húnig T. 77.  et al. 1997. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J. Exp. Med. 185:1295–305 [Google Scholar]
  78. Akari H, Bour S, Kao S, Adachi A, Strebel K. 78.  2001. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor κB-dependent expression of antiapoptotic factors. J. Exp. Med. 194:1299–312 [Google Scholar]
  79. Roy N, Pacini G, Berlioz-Torrent C, Janvier K. 79.  2014. Mechanisms underlying HIV-1 Vpu-mediated viral egress. Front. Microbiol. 5:177 [Google Scholar]
  80. Margottin F, Bour SP, Durand H, Selig L, Benichou S. 80.  et al. 1998. A novel human WD protein, h-βTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1:565–74 [Google Scholar]
  81. Magadán JG, Pérez-Victoria FJ, Sougrat R, Ye Y, Strebel K. 81.  et al. 2010. Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLOS Pathog 6:e1000869 [Google Scholar]
  82. Magadán JG, Bonifacino JS. 82.  2012. Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu. J. Virol. 86:757–72 [Google Scholar]
  83. Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. 83.  2003. Bst-2/HM1.24 is a RAFT-associated apical membrane protein with an unusual topology. Traffic 4:694–709 [Google Scholar]
  84. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA. 84.  et al. 2009. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139:499–511 [Google Scholar]
  85. Goffinet C, Allespach I, Homann S, Tervo H-M, Habermann A. 85.  et al. 2009. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5:285–97 [Google Scholar]
  86. Iwabu Y, Fujita H, Kinomoto M, Kaneko K, Ishizaka Y. 86.  et al. 2009. HIV-1 accessory protein Vpu internalizes cell-surface Bst-2/tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 284:35060–72 [Google Scholar]
  87. Mangeat B, Gers-Huber G, Lehmann M, Zufferey M, Luban J. 87.  et al. 2009. HIV-1 Vpu neutralizes the antiviral factor tetherin/Bst-2 by binding it and directing its β-TrCP2-dependent degradation. PLOS Pathog 5:e1000574 [Google Scholar]
  88. Douglas JL, Viswanathan K, McCarroll MN, Gustin JK, Früh K, Moses AV. 88.  2009. Vpu directs the degradation of the human immunodeficiency virus restriction factor Bst-2/tetherin via a βTrCP-dependent mechanism. J. Virol. 83:7931–47 [Google Scholar]
  89. Abada P, Noble B, Cannon PM. 89.  2005. Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production. J. Virol. 79:3627–38 [Google Scholar]
  90. Bour S, Strebel K. 90.  1996. The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J. Virol. 70:8285–300 [Google Scholar]
  91. Hauser H, Lopez LA, Yang SJ, Oldenburg JE, Exline CM. 91.  et al. 2010. HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment. Retrovirology 7:51 [Google Scholar]
  92. Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J. 92.  et al. 2009. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLOS Pathog 5:e1000429 [Google Scholar]
  93. Le Tortorec A, Neil SJD. 93.  2009. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 83:11966–78 [Google Scholar]
  94. Sauter D, Schindler M, Specht A, Landford WN, Münch J. 94.  et al. 2009. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6:409–21 [Google Scholar]
  95. Yang SJ, Lopez LA, Hauser H, Exline CM, Haworth KG, Cannon PM. 95.  2010. Anti-tetherin activities in Vpu-expressing primate lentiviruses. Retrovirology 7:13 [Google Scholar]
  96. Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D. 96.  et al. 2009. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6:54–67 [Google Scholar]
  97. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O. 97.  et al. 2003. Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene 22:3307–18 [Google Scholar]
  98. Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J. 98.  2013. Stimulation of NF-κB activity by the HIV restriction factor BST2. J. Virol. 87:2046–57 [Google Scholar]
  99. Galão RP, Le Tortorec A, Pickering S, Kueck T, Neil SJD. 99.  2012. Innate sensing of HIV-1 assembly by tetherin induces NF-κB-dependent proinflammatory responses. Cell Host Microbe 12:633–44 [Google Scholar]
  100. Bour S, Perrin C, Akari H, Strebel K. 100.  2001. The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J. Biol. Chem. 276:15920–28 [Google Scholar]
  101. Besnard-Guerin C, Belaïdouni N, Lassot I, Segeral E, Jobart A. 101.  et al. 2004. HIV-1 Vpu sequesters β-transducin repeat-containing protein (βTrCP) in the cytoplasm and provokes the accumulation of β-catenin and other SCFβTrCP substrates. J. Biol. Chem. 279:788–95 [Google Scholar]
  102. Sauter D, Hotter D, Van Driessche B, Stürzel CM, Kluge SF. 102.  et al. 2015. Differential regulation of NF-kB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 10:586–600 [Google Scholar]
  103. Manganaro L, de Castro E, Maestre AM, Olivieri K, García-Sastre A. 103.  et al. 2015. HIV Vpu interferes with NF-κB activity but not with interferon regulatory factor 3. J. Virol. 89:9781–90 [Google Scholar]
  104. Hayden MS, Ghosh S, Hayden MS, Ghosh S. 104.  2012. NF-kB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–34 [Google Scholar]
  105. Kondo E, Mammano F, Cohen EA, Göttlinger HG. 105.  1995. The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J. Virol. 69:2759–64 [Google Scholar]
  106. Andersen JL, Planelles V. 106.  2005. The role of Vpr in HIV-1 pathogenesis. Curr. HIV Res. 3:43–51 [Google Scholar]
  107. Lai M, Zimmerman ES, Planelles V, Chen J. 107.  2005. Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo. J. Virol. 79:15443–51 [Google Scholar]
  108. Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V. 108.  2003. Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J. Biol. Chem. 278:25879–86 [Google Scholar]
  109. Zimmerman ES, Sherman MP, Blackett JL, Neidleman JA, Kreis C. 109.  et al. 2006. Human immunodeficiency virus type 1 Vpr induces DNA replication stress in vitro and in vivo. J. Virol. 80:10407–18 [Google Scholar]
  110. Belzile JP, Abrahamyan LG, Gérard FCA, Rougeau N, Cohen ÉA. 110.  2010. Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest. PLOS Pathog 6:e1001080 [Google Scholar]
  111. Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL. 111.  et al. 2004. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and γ-H2AX focus formation. Mol. Cell. Biol. 24:9286–94 [Google Scholar]
  112. Planelles V, Jowett JBM, Li Q-X, Xie Y, Hahn B, Chen ISY. 112.  1996. Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J. Virol. 70:2516–24 [Google Scholar]
  113. Hrecka K, Gierszewska M, Srivastava S, Kozaczkiewicz L, Swanson SK. 113.  et al. 2007. Lentiviral Vpr usurps Cul4-DDB1[VPRBP] E3 ubiquitin ligase to modulate cell cycle. PNAS 104:11778–83 [Google Scholar]
  114. Belzile JP, Duisit G, Rougeau N, Mercier J, Finzi A, Cohen ÉA. 114.  2007. HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase. PLOS Pathog 3:0882–93 [Google Scholar]
  115. Schröfelbauer B, Hakata Y, Landau NR. 115.  2007. HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. PNAS 104:4130–35 [Google Scholar]
  116. Laguette N, Brégnard C, Hue P, Basbous J, Yatim A. 116.  et al. 2014. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 156:134–45 [Google Scholar]
  117. Fregoso OI, Emerman M. 117.  2016. Activation of the DNA damage response is a conserved function of HIV-1 and HIV-2 Vpr that is independent of SLX4 recruitment. mBio 7:1–10 [Google Scholar]
  118. Lovejoy CA, Lock K, Yenamandra A, Cortez D. 118.  2006. DDB1 maintains genome integrity through regulation of Cdt1. Mol. Cell. Biol. 26:7977–90 [Google Scholar]
  119. Wu Y, Zhou X, Barnes CO, DeLucia M, Cohen AE. 119.  et al. 2016. The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat. Struct. Mol. Biol. 23:933–40 [Google Scholar]
  120. Chen R, Le Rouzic E, Kearney JA, Mansky LM, Benichou S. 120.  2004. Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J. Biol. Chem. 279:28419–25 [Google Scholar]
  121. Wang L, Mukherjee S, Jia F, Narayan O, Zhao LJ. 121.  1995. Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Sp1 and trans-activation of viral long terminal repeat. J. Biol. Chem. 270:25564–69 [Google Scholar]
  122. Sawaya BE, Khalili K, Gordon J, Taube R, Amini S. 122.  2000. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J. Biol. Chem. 275:35209–14 [Google Scholar]
  123. Gummuluru S, Emerman M. 123.  1999. Cell cycle- and Vpr-mediated regulation of human immunodeficiency virus type 1 expression in primary and transformed T-cell lines. J. Virol. 73:5422–30 [Google Scholar]
  124. Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN. 124.  et al. 1998. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat. Med. 4:65–71 [Google Scholar]
  125. Forget J, Yao XJ, Mercier J, Cohen EA. 125.  1998. Human immunodeficiency virus type 1 Vpr protein transactivation function: mechanism and identification of domains involved. J. Mol. Biol. 284:915–23 [Google Scholar]
  126. Felzien LK, Woffendin C, Hottiger MO, Subbramanian RA, Cohen EA, Nabel GJ. 126.  1998. HIV transcriptional activation by the accessory protein, Vpr, is mediated by the p300 co-activator. PNAS 95:5281–86 [Google Scholar]
  127. Zahoor MA, Xue G, Sato H, Murakami T, Takeshima SN, Aida Y. 127.  2014. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages. PLOS ONE 9:e106418 [Google Scholar]
  128. Campbell MJ, Cho RJ, Huang M, Dong H, Steinmetz L. 128.  et al. 2001. Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27:48–54 [Google Scholar]
  129. Allan J, Coligan J, Lee T, McLane M, Kanki P. 129.  et al. 1985. A new HTLV-III/LAV encoded antigen detected by antibodies from AIDS patients. Science 230:810–13 [Google Scholar]
  130. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. 130.  1995. Absence of intact Nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med. 332:228–32 [Google Scholar]
  131. Guy B, Kieny MP, Riviere Y, Le Peuch C, Dott K. 131.  et al. 1987. HIV F/3′ ORF encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330:266–69 [Google Scholar]
  132. Garcia JV, Miller AD. 132.  1991. Serine phosphorylation-independent downregulation of cell-surface CD4 by Nef. Nature 350:508–11 [Google Scholar]
  133. Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL. 133.  2008. HIV-1 Nef targets MHC-I and CD4 for degradation via a final common β-COP-dependent pathway in T cells. PLOS Pathog 4:e1000131 [Google Scholar]
  134. Schwartz O, Maréchal V, Le Gall S, Lemonnier F. 134.  Heard J-M; 1996. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2:338–42 [Google Scholar]
  135. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G. 135.  et al. 2001. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. PNAS 98:12144–49 [Google Scholar]
  136. Geyer M, Fackler OT, Peterlin BM. 136.  2001. Structure–function relationships in HIV-1 Nef. EMBO Rep 2:580–85 [Google Scholar]
  137. Roeth JF, Williams M, Kasper MR, Filzen TM, Collins KL. 137.  2004. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J. Cell Biol. 167:903–13 [Google Scholar]
  138. Chaudhuri R, Lindwasser OW, Smith WJ, Hurley JH, Bonifacino JS. 138.  2007. Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the ap2 clathrin adaptor. J. Virol. 81:3877–90 [Google Scholar]
  139. Wildum S, Schindler M, Münch J, Kirchhoff F. 139.  2006. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J. Virol. 80:8047–59 [Google Scholar]
  140. Usami Y, Wu Y, Göttlinger HG. 140.  2015. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 526:218–23 [Google Scholar]
  141. Rosa A, Chande A, Ziglio S, De Sanctis V, Bertorelli R. 141.  et al. 2015. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 526:212–17 [Google Scholar]
  142. Wang J-K, Kiyokawa E, Verdin ETD. 142.  2000. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. PNAS 72:1337–40 [Google Scholar]
  143. Mangino G, Percario ZA, Fiorucci G, Vaccari G, Acconcia F. 143.  et al. 2011. HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2. PLOS ONE 6:e22982 [Google Scholar]
  144. Sauter D, Hotter D, Van Driessche B, Stürzel CM, Kluge SF. 144.  et al. 2015. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 10:586–99 [Google Scholar]
  145. Williams SA, Chen L-F, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC. 145.  2006. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–49 [Google Scholar]
  146. Simmons A, Aluvihare V, McMichael A. 146.  2001. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14:763–77 [Google Scholar]
  147. Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D. 147.  et al. 2001. Identification of three functions of the adenovirus E4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J. Virol. 75:699–709 [Google Scholar]
  148. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 148.  1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–36 [Google Scholar]
  149. Edwards MR, Johnson B, Mire CE, Xu W, Shabman RS. 149.  et al. 2014. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 6:1017–25 [Google Scholar]
  150. Felsani A, Mileo AM, Paggi MG. 150.  2006. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25:5277–85 [Google Scholar]
  151. Pavletich NP, Lee J-O, Russo AA. 151.  1998. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391:859–65 [Google Scholar]
  152. Iaquinta PJ, Lees JA. 152.  2007. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol. 19:649–57 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041654
Loading
/content/journals/10.1146/annurev-virology-101416-041654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error