1932

Abstract

Our vision depends upon shifting our high-resolution fovea to objects of interest in the visual field. Each saccade displaces the image on the retina, which should produce a chaotic scene with jerks occurring several times per second. It does not. This review examines how an internal signal in the primate brain (a corollary discharge) contributes to visual continuity across saccades. The article begins with a review of evidence for a corollary discharge in the monkey and evidence from inactivation experiments that it contributes to perception. The next section examines a specific neuronal mechanism for visual continuity, based on corollary discharge that is referred to as visual remapping. Both the basic characteristics of this anticipatory remapping and the factors that control it are enumerated. The last section considers hypotheses relating remapping to the perceived visual continuity across saccades, including remapping's contribution to perceived visual stability across saccades.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102016-061207
2018-09-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-102016-061207.html?itemId=/content/journals/10.1146/annurev-vision-102016-061207&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen RA, Asanuma C, Essick G, Siegel RM 1990. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296:65–113
    [Google Scholar]
  2. Andersen RA, Mountcastle VB 1983. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3:532–48
    [Google Scholar]
  3. Bays PM, Husain M 2007. Spatial remapping of the visual world across saccades. Neuroreport 18:1207–13
    [Google Scholar]
  4. Bedell HE, Tong J, Aydin M 2010. The perception of motion smear during eye and head movements. Vis. Res. 50:2692–701
    [Google Scholar]
  5. Bellebaum C, Daum I, Koch B, Schwarz M, Hoffmann KP 2005. The role of the human thalamus in processing corollary discharge. Brain 128:1139–54
    [Google Scholar]
  6. Bellebaum C, Hoffmann KP, Koch B, Schwarz M, Daum I 2006. Altered processing of corollary discharge in thalamic lesion patients. Eur. J. Neurosci. 24:2375–88
    [Google Scholar]
  7. Berman RA, Cavanaugh JR, McAlonan K, Wurtz RH 2016. A circuit for saccadic suppression in the primate brain. J. Neurophysiol. 117:1720–35
    [Google Scholar]
  8. Berman RA, Colby C 2009. Attention and active vision. Vis. Res. 49:1233–48
    [Google Scholar]
  9. Berman RA, Wurtz RH 2010. Functional Identification of a pulvinar path from superior colliculus to cortical area MT. J. Neurosci. 30:6342–54
    [Google Scholar]
  10. Berman RA, Wurtz RH 2011. Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J. Neurosci. 31:373–84
    [Google Scholar]
  11. Bisley JW, Goldberg ME 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86
    [Google Scholar]
  12. Bisley JW, Goldberg ME 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21
    [Google Scholar]
  13. Bridgeman B, Hendry D, Stark L 1975. Failure to detect displacement of the visual world during saccadic eye movements. Vis. Res. 15:719–22
    [Google Scholar]
  14. Burr DC, Morrone MC 2011. Spatiotopic coding and remapping in humans. Philos. Trans. R. Soc. B 366:504–15
    [Google Scholar]
  15. Campbell FW, Wurtz RH 1978. Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis. Res. 18:1297–303
    [Google Scholar]
  16. Cavanagh P, Hunt AR, Afraz A, Rolfs M 2010. Visual stability based on remapping of attention pointers. Trends Cogn. Sci. 14:147–53
    [Google Scholar]
  17. Cavanaugh J, Berman RA, Joiner WM, Wurtz RH 2016. Saccadic corollary discharge underlies st. . . able visual perception. J. Neurosci. 36:31–42First demonstration that the CD in monkeys is used for perception as well as movement.
    [Google Scholar]
  18. Chafee MV, Goldman-Rakic PS 1998. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79:2919–40
    [Google Scholar]
  19. Chafee MV, Goldman-Rakic PS 2000. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 83:1550–66
    [Google Scholar]
  20. Churan J, Guitton D, Pack CC 2011. Context dependence of receptive field remapping in superior colliculus. J. Neurophysiol. 106:1862–74
    [Google Scholar]
  21. Cicchini GM, Binda P, Burr DC, Morrone MC 2013. Transient spatiotopic integration across saccadic eye movements mediates visual stability. J. Neurophysiol. 109:1117–25
    [Google Scholar]
  22. Colby CL, Duhamel J-R, Goldberg ME 1995. Oculocentric spatial representation in parietal cortex. Cereb. Cortex 5:470–81
    [Google Scholar]
  23. Colby CL, Goldberg ME 1999. Space and attention in parietal cortex. Annu. Rev. Neurosci. 23:319–49
    [Google Scholar]
  24. Collins T 2010. Extraretinal signal metrics in multiple-saccade sequences. J. Vis. 10:147
    [Google Scholar]
  25. Collins T, Rolfs M, Deubel H, Cavanagh P 2009. Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. J. Vis. 9:529
    [Google Scholar]
  26. Crapse TB, Sommer MA 2008. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 9:587–600
    [Google Scholar]
  27. Crapse TB, Sommer MA 2012. Frontal eye field neurons assess visual stability across saccades. J. Neurosci. 32:2835–45
    [Google Scholar]
  28. Deubel H, Bridgeman B, Schneider WX 1998. Immediate post-saccadic information mediates space constancy. Vis. Res. 38:3147–59
    [Google Scholar]
  29. Deubel H, Koch C, Bridgeman B 2010. Landmarks facilitate visual space constancy across saccades and during fixation. Vis. Res. 50:249–59
    [Google Scholar]
  30. Deubel H, Schneider WX, Bridgeman B 1996. Postsaccadic target blanking prevents saccadic suppression of image displacement. Vis. Res. 36:985–96First study to show that a blank period at the saccade end changed the threshold for saccadic suppression of displacement.
    [Google Scholar]
  31. Duhamel J-R, Bremmer F, Ben Hamed S, Graf W 1997. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–48
    [Google Scholar]
  32. Duhamel J-R, Colby CL, Goldberg ME 1992. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92First report of retinotopic remapping.
    [Google Scholar]
  33. Dunn CA, Hall NJ, Colby CL 2010. Spatial updating in monkey superior colliculus in the absence of the forebrain commissures: dissociation between superficial and intermediate layers. J. Neurophysiol. 104:126785
    [Google Scholar]
  34. Duyck M, Collins T, Wexler M 2016. Masking the saccadic smear. J. Vis. 16:101
    [Google Scholar]
  35. Fabius JH, Fracasso A, Van der Stigchel S 2016. Spatiotopic updating facilitates perception immediately after saccades. Sci. Rep. 6:34488
    [Google Scholar]
  36. Feinberg I 1978. Efference copy and corollary discharge: implications for thinking and disorders. Schizophr. Bull. 4:636–40
    [Google Scholar]
  37. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  38. Galletti C, Battaglini PP, Fattori P 1993. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp. Brain Res. 96:221–29
    [Google Scholar]
  39. Ganmor E, Landy MS, Simoncelli EP 2015. Near-optimal integration of orientation information across saccades. J. Vis. 15:168
    [Google Scholar]
  40. Gaymard B, Rivaud S, Pierrot-Deseilligny C 1994. Impairment of extraretinal eye position signals after central thalamic lesions in humans. Exp. Brain Res. 102:1–9
    [Google Scholar]
  41. Gibson JJ 1950. The Perception of the Visual World Boston: Houghton Mifflin
  42. Goldberg ME, Wurtz RH 1972. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35:542–59
    [Google Scholar]
  43. Gottlieb JP, Kusunoki M, Goldberg ME 1998. The representation of visual salience in monkey parietal cortex. Nature 391:481–84First demonstration of the importance of attention for remapping.
    [Google Scholar]
  44. Grüsser OJ 1995. On the history of the ideas of efference copy and reafference. Clio Med 33:35–55
    [Google Scholar]
  45. Hall NJ, Colby CL 2011. Remapping for visual stability. Philos. Trans. R. Soc. B 366:528–39
    [Google Scholar]
  46. Hallett PE, Lightstone AD 1976. Saccadic eye movements to flashed targets. Vis. Res. 16:107–14
    [Google Scholar]
  47. Hamker FH 2004. A dynamic model of how feature cues guide spatial attention. Vis. Res. 44:501–21
    [Google Scholar]
  48. Harrison WJ, Retell JD, Remington RW, Mattingley JB 2013. Visual crowding at a distance during predictive remapping. Curr. Biol. 23:793–98
    [Google Scholar]
  49. Hartmann TS, Bremmer F, Albright TD, Krekelberg B 2011. Receptive field positions in area MT during slow eye movements. J. Neurosci. 31:10437–44
    [Google Scholar]
  50. Hartmann TS, Zirnsak M, Marquis M, Hamker FH, Moore T 2017. Two types of receptive field dynamics in area V4 at the time of eye movements. ? Front. Syst. Neurosci. 11:13
    [Google Scholar]
  51. Heiser LM, Colby CL 2006. Spatial updating in area LIP is independent of saccade direction. J. Neurophysiol. 95:2751–67
    [Google Scholar]
  52. Higgins E, Rayner K 2015. Transsaccadic processing: stability, integration, and the potential role of remapping. Atten. Percept. Psychophys. 77:3–27
    [Google Scholar]
  53. Higgins JS, Wang RF 2010. A landmark effect in the perceived displacement of objects. Vis. Res. 50:242–48
    [Google Scholar]
  54. Hunt AR, Cavanagh P 2011. Remapped visual masking. J. Vis. 11:113
    [Google Scholar]
  55. Ibbotson M, Krekelberg B 2011. Visual perception and saccadic eye movements. Curr. Opin. Neurobiol. 21:553–58
    [Google Scholar]
  56. Inaba N, Iwamoto Y, Yoshida K 2003. Changes in cerebellar fastigial burst activity related to saccadic gain adaptation in the monkey. Neurosci. Res. 46:359–68
    [Google Scholar]
  57. Inaba N, Kawano K 2014. Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements. PNAS 111:7825–30
    [Google Scholar]
  58. Inaba N, Kawano K 2016. Eye position effects on the remapped memory trace of visual motion in cortical area MST. Sci. Rep. 6:22013
    [Google Scholar]
  59. Joiner WM, Cavanaugh J, FitzGibbon EJ, Wurtz RH 2013. Corollary discharge contributes to perceived eye location in monkeys. J. Neurophysiol. 110:2402–13
    [Google Scholar]
  60. Joiner WM, Cavanaugh J, Wurtz RH 2011. Modulation of shifting receptive field activity in frontal eye field by visual salience. J. Neurophysiol. 106:1179–90
    [Google Scholar]
  61. Jonikaitis D, Szinte M, Rolfs M, Cavanagh P 2013. Allocation of attention across saccades. J. Neurophysiol. 109:1425–34
    [Google Scholar]
  62. Keith GP, Crawford JD 2008. Saccade-related remapping of target representations between topographic maps: a neural network study. J. Comput. Neurosci. 24:157–78
    [Google Scholar]
  63. Klein RM 2000. Inhibition of return. Trends Cogn. Sci. 4:138–47
    [Google Scholar]
  64. Klingenhoefer S, Bremmer F 2011. Saccadic suppression of displacement in face of saccade adaptation. Vis. Res. 51:881–89
    [Google Scholar]
  65. Knapen T, Swisher JD, Tong F, Cavanagh P 2016. Oculomotor remapping of visual information to foveal retinotopic cortex. Front. Syst. Neurosci. 10:54
    [Google Scholar]
  66. Kusunoki M, Goldberg ME 2003. The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J. Neurophysiol. 89:1519–27First study to show that current RF activity declines as future RF activity increases in remapping.
    [Google Scholar]
  67. Lee PH, Sooksawate T, Yanagawa Y, Isa K, Isa T, Hall WC 2007. Identity of a pathway for saccadic suppression. PNAS 104:6824–27
    [Google Scholar]
  68. Li WX, Matin L 1990.a Saccadic suppression of displacement: influence of postsaccadic exposure duration and of saccadic stimulus elimination. Vis. Res. 30:945–55
    [Google Scholar]
  69. Li WX, Matin L 1990.b The influence of saccade length on the saccadic suppression of displacement detection. Percept. Psychophys. 48:453–58
    [Google Scholar]
  70. Lynch JC, Hoover JE, Strick PL 1994. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 100:181–86
    [Google Scholar]
  71. MacKay DM 1972. Voluntary eye movements as questions. Bibl. Ophthalmol. 82:369–76
    [Google Scholar]
  72. MacKay DM 1973. Visual stability and voluntary eye movements. Central Processing of Visual Information A R Jung 307–31 Handb. Sens. Physiol. 7 Berlin: Springer-Verlag
    [Google Scholar]
  73. Macknik SL 2006. Visual masking approaches to visual awareness. Prog. Brain Res. 155:177–215
    [Google Scholar]
  74. Marino AC, Mazer JA 2016. Perisaccadic updating of visual representations and attentional states: linking behavior and neurophysiology. Front. Syst. Neurosci. 10:3
    [Google Scholar]
  75. Matin E, Clymer AB, Matin L 1972. Metacontrast and saccadic suppression. Science 178:179–82
    [Google Scholar]
  76. Matin L, Picoult E, Stevens JK, Edwards MW Jr., Young D, MacArthur R 1982. Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198–201
    [Google Scholar]
  77. Mayo JP, Sommer MA 2010. Shifting attention to neurons. Trends Cogn. Sci. 14:389
    [Google Scholar]
  78. McConkie GW, Currie CB 1996. Visual stability across saccades while viewing complex pictures. J. Exp. Psychol. 22:563–81
    [Google Scholar]
  79. McKyton A, Pertzov Y, Zohary E 2009. Pattern matching is assessed in retinotopic coordinates. J. Vis. 9:1319
    [Google Scholar]
  80. McLaughlin SC 1967. Parametric adjustment in saccadic eye movements. Percept. Psychophys. 2:359–62
    [Google Scholar]
  81. Melcher D, Colby CL 2008. Trans-saccadic perception. Trends Cogn. Sci. 12:466–73
    [Google Scholar]
  82. Mendoza G, Merchant H 2014. Motor system evolution and the emergence of high cognitive functions. Prog. Neurobiol. 122:73–93
    [Google Scholar]
  83. Merriam EP, Genovese CR, Colby CL 2003. Spatial updating in human parietal cortex. Neuron 39:361–73
    [Google Scholar]
  84. Merriam EP, Genovese CR, Colby CL 2007. Remapping in human visual cortex. J. Neurophysiol. 97:1738–55
    [Google Scholar]
  85. Mirpour K, Bisley JW 2012. Anticipatory remapping of attentional priority across the entire visual field. J. Neurosci. 32:16449–57First demonstration of the continuity from future RF to postsaccadic RF.
    [Google Scholar]
  86. Mirpour K, Bisley JW 2016. Remapping, spatial stability, and temporal continuity: from the pre-saccadic to postsaccadic representation of visual space in LIP. Cereb. Cortex 26:3183–95
    [Google Scholar]
  87. Morris AP, Chambers CD, Mattingley JB 2007. Parietal stimulation destabilizes spatial updating across saccadic eye movements. PNAS 104:9069–74
    [Google Scholar]
  88. Nakamura K, Colby CL 2000. Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. J. Neurophysiol. 84:677–92
    [Google Scholar]
  89. Nakamura K, Colby CL 2002. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. PNAS 99:4026–31
    [Google Scholar]
  90. Neupane S, Guitton D, Pack CC 2016.a Dissociation of forward and convergent remapping in primate visual cortex. Curr. Biol. 26:R491–92
    [Google Scholar]
  91. Neupane S, Guitton D, Pack CC 2016.b Two distinct types of remapping in primate cortical area V4. Nat. Commun. 7:10402
    [Google Scholar]
  92. Neupane S, Guitton D, Pack CC 2017. Coherent alpha oscillations link current and future receptive fields during saccades. PNAS 114:E5979–85
    [Google Scholar]
  93. Niemeier M, Crawford JD, Tweed DB 2002. A Bayesian approach to change blindness. Ann. N. Y. Acad. Sci. 956:474–75
    [Google Scholar]
  94. Niemeier M, Crawford JD, Tweed DB 2003. Optimal transsaccadic integration explains distorted spatial perception. Nature 422:76–80
    [Google Scholar]
  95. Ong WS, Bisley JW 2011. A lack of anticipatory remapping of retinotopic receptive fields in the middle temporal area. J. Neurosci. 31:10432–36
    [Google Scholar]
  96. Orban GA, Van Essen D, Vanduffel W 2004. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8:315–24
    [Google Scholar]
  97. Ostendorf F, Dolan RJ 2015. Integration of retinal and extraretinal information across eye movements. PLOS ONE 10:e0116810
    [Google Scholar]
  98. Ostendorf F, Liebermann D, Ploner CJ 2010. Human thalamus contributes to perceptual stability across eye movements. PNAS 107:1229–34First quantitative evidence that CD is impaired after thalamic infarct in humans.
    [Google Scholar]
  99. Ostendorf F, Liebermann D, Ploner CJ 2013. A role of the human thalamus in predicting the perceptual consequences of eye movements. Front. Syst. Neurosci. 7:10
    [Google Scholar]
  100. Paeye C, Collins T, Cavanagh P 2017. Transsaccadic perceptual fusion. J. Vis. 17:114
    [Google Scholar]
  101. Peng X, Sereno ME, Silva AK, Lehky SR, Sereno AB 2008. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100:796–814
    [Google Scholar]
  102. Poletti M, Burr DC, Rucci M 2013. Optimal multimodal integration in spatial localization. J. Neurosci. 33:14259–68
    [Google Scholar]
  103. Posner MI, Cohen Y 1984. Components of visual orienting. Attention and Performance X H Bouma, D Bowhuis 531–56 Hillsdale, NJ: Erlbaum
    [Google Scholar]
  104. Poulet JF, Hedwig B 2007. New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci 30:14–21
    [Google Scholar]
  105. Quaia C, Optican LM, Goldberg ME 1998. The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Netw 11:1229–40
    [Google Scholar]
  106. Rao HM, Mayo JP, Sommer MA 2016.a Circuits for presaccadic visual remapping. J. Neurophysiol. 116:2624–36
    [Google Scholar]
  107. Rao HM, San Juan J, Shen FY, Villa JE, Rafie KS, Sommer MA 2016.b Neural network evidence for the coupling of presaccadic visual remapping to predictive eye position updating. Front. Comput. Neurosci. 10:52
    [Google Scholar]
  108. Richmond BJ, Wurtz RH 1980. Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. J. Neurophysiol. 43:1156–67
    [Google Scholar]
  109. Robinson DL, Wurtz RH 1976. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. J. Neurophysiol. 39:852–70
    [Google Scholar]
  110. Rolfs M 2015. Attention in active vision: a perspective on perceptual continuity across saccades. Perception 44:900–19
    [Google Scholar]
  111. Rolfs M, Jonikaitis D, Deubel H, Cavanagh P 2011. Predictive remapping of attention across eye movements. Nat. Neurosci. 14:252–56
    [Google Scholar]
  112. Rolfs M, Szinte M 2016. Remapping attention pointers: linking physiology and behavior. Trends Cogn. Sci. 20:399–401
    [Google Scholar]
  113. Roska B, Meister M 2014. The retina dissects the visual scene into distinct features. The New Visual Sciences JS Warner, LM Chalupa 163–82 Cambridge, MA: MIT Press
    [Google Scholar]
  114. Rösler L, Rolfs M, van der Stigchel S, Neggers SF, Cahn W et al. 2015. Failure to use corollary discharge to remap visual target locations is associated with psychotic symptom severity in schizophrenia. J. Neurophysiol. 114:1129–36
    [Google Scholar]
  115. Selemon LD, Goldman-Rakic PS 1988. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8:4049–68
    [Google Scholar]
  116. Sereno AB, Maunsell JH 1998. Shape selectivity in primate lateral intraparietal cortex. Nature 395:500–3
    [Google Scholar]
  117. Shafer-Skelton A, Kupitz CN, Golomb JD 2017. Object-location binding across a saccade: a retinotopic spatial congruency bias. Atten. Percept. Psychophys. 79:765–81
    [Google Scholar]
  118. Shin S, Sommer MA 2012. Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields. J. Neurophysiol. 108:2144–59
    [Google Scholar]
  119. Sommer MA, Wurtz RH 2002. A pathway in primate brain for internal monitoring of movements. Science 296:1480–82First demonstration of a CD circuit in monkeys from SC through MD to FEF.
    [Google Scholar]
  120. Sommer MA, Wurtz RH 2004.a What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91:1381–402
    [Google Scholar]
  121. Sommer MA, Wurtz RH 2004.b What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91:1403–23
    [Google Scholar]
  122. Sommer MA, Wurtz RH 2006. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–77First demonstration that the CD in monkeys was necessary to produce shifting RFs.
    [Google Scholar]
  123. Sommer MA, Wurtz RH 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31:317–38
    [Google Scholar]
  124. Sparks DL 1986. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66:118–71
    [Google Scholar]
  125. Sperry RW 1950. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43:482–89
    [Google Scholar]
  126. Subramanian J, Colby CL 2014. Shape selectivity and remapping in dorsal stream visual area LIP. J. Neurophysiol. 111:613–27
    [Google Scholar]
  127. Sun LD, Goldberg ME 2016. Corollary discharge and oculomotor proprioception: cortical mechanisms for spatially accurate vision. Annu. Rev. Vis. Sci. 2:61–84
    [Google Scholar]
  128. Szinte M, Wexler M, Cavanagh P 2012. Temporal dynamics of remapping captured by peri-saccadic continuous motion. J. Vis. 12:712
    [Google Scholar]
  129. Thakkar KN, Diwadkar VA, Rolfs M 2017. Oculomotor prediction: a window into the psychotic mind. Trends Cogn. Sci. 21:344–56
    [Google Scholar]
  130. Thakkar KN, Schall JD, Logan GD, Park S 2015. Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain Cogn 95:90–98
    [Google Scholar]
  131. Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH 2001. Eye movements modulate visual receptive fields of V4 neurons. Neuron 29:757–67
    [Google Scholar]
  132. Umeno MM, Goldberg ME 1997. Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78:1373–83
    [Google Scholar]
  133. von Helmholtz HLF 1896 (1925). The direction of vision. Treatise on Physiological Optics 3 transl. JPC Southall 242–81 New York: Opt. Soc. Am, 3rd ed..
    [Google Scholar]
  134. von Holst E, Mittelstaedt H 1950. Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–76
    [Google Scholar]
  135. Walker MF, Fitzgibbon EJ, Goldberg ME 1995. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73:1988–2003
    [Google Scholar]
  136. Wang X, Fung CC, Guan S, Wu S, Goldberg ME, Zhang M 2016. Perisaccadic receptive field expansion in the lateral intraparietal area. Neuron 90:400–9
    [Google Scholar]
  137. Wang X, Zhang M, Cohen IS, Goldberg ME 2007. The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat. Neurosci. 10:640–46First demonstration of an eye proprioception input to monkey somatosensory cortex.
    [Google Scholar]
  138. Wang Z, Klein RM 2010. Searching for inhibition of return in visual search: a review. Vis. Res. 50:220–28
    [Google Scholar]
  139. Watson TL, Krekelberg B 2009. The relationship between saccadic suppression and perceptual stability. Curr. Biol. 19:1040–43
    [Google Scholar]
  140. Weinberger DR, Berman KF 1996. Prefrontal function in schizophrenia: confounds and controversies. Philos. Trans. R. Soc. B 351:1495–503
    [Google Scholar]
  141. Wexler M, Collins T 2014. Orthogonal steps relieve saccadic suppression. J. Vis. 14:213
    [Google Scholar]
  142. Wolf C, Schutz AC 2015. Trans-saccadic integration of peripheral and foveal feature information is close to optimal. J. Vis. 15:161
    [Google Scholar]
  143. Wurtz RH 2008. Neuronal mechanisms of visual stability. Vis. Res. 48:2070–89
    [Google Scholar]
  144. Wurtz RH 2015. Brain mechanisms for active vision. Daedalus 144:10–21
    [Google Scholar]
  145. Wurtz RH, Albano JE 1980. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3:189–226
    [Google Scholar]
  146. Xu BY, Karachi C, Goldberg ME 2012. The postsaccadic unreliability of gain fields renders it unlikely that the motor system can use them to calculate target position in space. Neuron 76:1201–9
    [Google Scholar]
  147. Yao T, Treue S, Krishna BS 2016. An attention-sensitive memory trace in macaque MT following saccadic eye movements. PLOS Biol 14:e1002390
    [Google Scholar]
  148. Zelinsky GJ, Bisley JW 2015. The what, where, and why of priority maps and their interactions with visual working memory. Ann. N. Y. Acad. Sci. 1339:154–64
    [Google Scholar]
  149. Zirnsak M, Moore T 2014. Saccades and shifting receptive fields: anticipating consequences or selecting targets. ? Trends Cogn. Sci. 18:621–28
    [Google Scholar]
/content/journals/10.1146/annurev-vision-102016-061207
Loading
/content/journals/10.1146/annurev-vision-102016-061207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error