1932

Abstract

Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1 → 4) β-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep, whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.13.1.171
1997-11-01
2024-04-27
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.cellbio.13.1.171
Loading
/content/journals/10.1146/annurev.cellbio.13.1.171
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error