1932

Abstract

Because plants are composed of immobile cells, plant morphogenesis requires mechanisms allowing precise control of cell expansion and cell division patterns. Cortical domains, localized in response to directional cues, are of central importance in establishing cell polarity, orienting cell division, and determining daughter cell fates in a wide variety of prokaryotic and eukaryotic organisms. Such domains consist of localized macromolecular complexes that, in plant cells, provide spatial control of cell expansion and cell division functions. The role of the cytoskeleton, plasma membrane, and targeted secretion to the cell wall in the spatial regulation of cell morphogenesis in plants is discussed in light of recent results from model organisms, including brown algal zygotes (e.g. ). A general model, emphasizing the importance of cortical sites and targeted secretion, is proposed for morphogenesis in higher plant cells based on current knowledge and principles derived from analysis of the establishment of a stable cortical asymmetry in . The model illustrates mechanisms to direct the orientation of an asymmetric division resulting in daughter cells with different fates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.13.1.697
1997-11-01
2024-04-26
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.cellbio.13.1.697
Loading
/content/journals/10.1146/annurev.cellbio.13.1.697
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error