1932

Abstract

Abstract

For many leaf-feeding herbivores, synchrony in phenology with their host plant is crucial as development outside a narrow phenological time window has severe fitness consequences. In this review, we link mechanisms, adaptation, and population dynamics within a single conceptual framework, needed for a full understanding of the causes and consequences of this synchrony. The physiological mechanisms underlying herbivore and plant phenology are affected by environmental cues, such as photoperiod and temperature, although not necessarily in the same way. That these different mechanisms lead to synchrony, even if there is spatial and temporal variation in plant phenology, is a result of the strong natural selection acting on the mechanism underlying herbivore phenology. Synchrony has a major impact on the population densities of leaf-feeding Lepidoptera, and years with a high synchrony may lead to outbreaks. Global climate change leads to a disruption of the synchrony between herbivores and their host plants, which may have major impacts for population viability if natural selection is insufficient to restore synchrony.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ento.52.110405.091418
2007-01-07
2024-04-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.ento.52.110405.091418
Loading
/content/journals/10.1146/annurev.ento.52.110405.091418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error