1932

Abstract

Boveri's idea that somatic mutations are at the root of cancer found its first specific support with the investigation of leukemia and Burkitt's lymphoma, and the discovery of the mechanism of oncogene activation by balanced translocation. The study of retinoblastoma later led to the cloning of the first antioncogene, or tumor suppressor gene, and to understanding the mechanisms by which the wild-type genes lose activity. Only a small subset of cancer involves simple mechanisms. A category of hereditary disorders called the phakomatoses provide a perspective on the chain of oncogenic events in such cancers because of two-hit precursor lesions that have a low probability of malignant transformation. The common carcinomas are much more complex and are typically genetically unstable, owing either to mutational instability or chromosomal instability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.34.1.1
2000-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genet/34/1/annurev.genet.34.1.1.html?itemId=/content/journals/10.1146/annurev.genet.34.1.1&mimeType=html&fmt=ahah

Literature Cited

  1. Bagchi S, Weinmann R, Raychaudhuri P. 1991. The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F.. Cell 65:1063–72 [Google Scholar]
  2. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53.. Science 249:912–15 [Google Scholar]
  3. Baltimore D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses.. Nature 226:1209–11 [Google Scholar]
  4. Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC. et al. 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome.. Science 286:2528–31 [Google Scholar]
  5. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. 1994. Mutator phenotypes in human colorectal carcinoma cell lines.. Proc. Natl. Acad. Sci. USA 91:6319–23 [Google Scholar]
  6. Biegel JA, Womer RB, Emanuel BS. 1989. Complex karyotypes in a series of pediatric osteosarcomas.. Cancer Genet. Cytogenet. 38:89–100 [Google Scholar]
  7. Boveri T. 1914. Zur Frage der Entstehung maligner Tumoren. Jena: Gustav Fischer; The Origin of Malignant Tumors. Transl. M Boveri, 1929. Baltimore: Williams & Wilkins.
  8. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG. et al. 1994. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non- polyposis colon cancer.. Nature 368:258–61 [Google Scholar]
  9. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R. et al. 1983. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma.. Nature 305:779–84 [Google Scholar]
  10. Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M. et al. 1990. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations.. Cell 62:193–201 [Google Scholar]
  11. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. 1991. The E2F transcription factor is a cellular target for the RB protein.. Cell 65:1053–61 [Google Scholar]
  12. Comings DE. 1973. A general theory of carcinogenesis.. Proc. Natl. Acad. Sci. USA 70:3324–28 [Google Scholar]
  13. Consortium TECTS. 1993. Identification and characterization of the tuberous sclerosis gene on chromosome 16.. Cell 75:1305–15 [Google Scholar]
  14. Croce CM, Nowell PC. 1985. Molecular basis of human B cell neoplasia.. Blood 65:1–7 [Google Scholar]
  15. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM. et al. 1988. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene.. Cell 54:275–83 [Google Scholar]
  16. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC. et al. 2000. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation.. Nature 404:510–14 [Google Scholar]
  17. Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G. et al. 1990. p53 functions as a cell cycle control protein in osteosarcomas.. Mol. Cell Biol. 10:5772–81 [Google Scholar]
  18. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K. et al. 1993. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC.. Hum. Mol. Genet. 2:851–56 [Google Scholar]
  19. Draper GJ, Sanders BM, Kingston JE. 1986. Second primary neoplasms in patients with retinoblastoma.. Br. J. Cancer 53:661–71 [Google Scholar]
  20. Dryja TP, Rapaport JM, Epstein J, Goorin AM, Weichselbaum R. et al. 1986. Chromosome 13 homozygosity in osteosarcoma without retinoblastoma.. Am. J. Hum. Genet. 38:59–66 [Google Scholar]
  21. Eker R, Mossige J. 1961. A dominant gene for renal adenomas in the rat.. Nature 189:858–59 [Google Scholar]
  22. Eker R, Mossige J, Johannessen JV, Aars H. 1981. Hereditary renal adenomas and adenocarcinomas in rats.. Diagn. Histopathol. 4:99–110 [Google Scholar]
  23. Finlay CA, Hinds PW, Levine AJ. 1989. The p53 proto-oncogene can act as a suppressor of transformation.. Cell 57:1083–93 [Google Scholar]
  24. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA. et al. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer.. Cell 75:1027–38 [Google Scholar]
  25. Francke U, Kung F. 1976. Sporadic bilateral retinoblastoma and 13q- chromosomal deletion.. Med. Pediatr. Oncol. 2:379–85 [Google Scholar]
  26. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM. et al. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma.. Nature 323:643–46 [Google Scholar]
  27. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. 1996. Abnormal centrosome amplification in the absence of p53.. Science 271:1744–47 [Google Scholar]
  28. Ghadimi BM, Sackett DL, Difilippantonio MJ, Schrock E, Neumann T. et al. 2000. Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.. Genes Chromosomes Cancer 27:183–90 [Google Scholar]
  29. Ghebranious N, Donehower LA. 1998. Mouse models in tumor suppression.. Oncogene 17:3385–400 [Google Scholar]
  30. Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L. et al. 2000. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA. In press.
  31. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L. et al. 1991. Identification and characterization of the familial adenomatous polyposis coli gene.. Cell 66:589–600 [Google Scholar]
  32. Haber JE. 1999. DNA repair. Gatekeepers of recombination.. Nature 398:665 [Google Scholar]
  33. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S. et al. 1996. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome.. Cell 85:841–51 [Google Scholar]
  34. Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A. 1992. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F.. Cell 70:337–50 [Google Scholar]
  35. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S. et al. 1998. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome.. Nature 391:184–87 [Google Scholar]
  36. Hethcote HW, Knudson AG. 1978. Model for the incidence of embryonal cancers: application to retinoblastoma.. Proc. Natl. Acad. Sci. USA 75:2453–57 [Google Scholar]
  37. Houlston R, Bevan S, Williams A, Young J, Dunlop M. et al. 1998. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases.. Hum. Mol. Genet. 7:1907–12 [Google Scholar]
  38. Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ. et al. 1998. Mutations in the SMAD4/DPC4 gene in juvenile polyposis.. Science 280:1086–88 [Google Scholar]
  39. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis.. Nature 363:558–61 [Google Scholar]
  40. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S. et al. 1998. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.. Nat. Genet. 18:38–43 [Google Scholar]
  41. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW. et al. 1996. Human homolog of patched, a candidate gene for the basal cell nevus syndrome.. Science 272:1668–71 [Google Scholar]
  42. Kaelin WG, Krek W, Sellers WR, Decaprio JA, Ajchenbaum F. et al. 1992. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties.. Cell 70:351–64 [Google Scholar]
  43. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T. et al. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia.. Cell 71:587–97 [Google Scholar]
  44. Khan SH, Moritsugu J, Wahl GM. 2000. Differential requirement for p19ARF in the p53–dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion.. Proc. Natl. Acad. Sci. USA 97:3266–71 [Google Scholar]
  45. Kinzler KW, Vogelstein B. 1997. Cancer-susceptibility genes. Gatekeepers and caretakers.. Nature 386:761–63 [Google Scholar]
  46. Knudson AG. 1965. Ethnic differences in childhood leukemia as revealed by a study of antecedent variables.. Cancer 18:815–18 [Google Scholar]
  47. Knudson AG. 1966. Congenital viral infection and human disease.. Am. Nat. 100:162–64 [Google Scholar]
  48. Knudson AG. 1971. Mutation and cancer: statistical study of retinoblastoma.. Proc. Natl. Acad. Sci. USA 68:820–23 [Google Scholar]
  49. Knudson AG. 1973. Mutation and human cancer.. Adv. Cancer Res. 17:317–52 [Google Scholar]
  50. Knudson AG. 1978. Retinoblastoma: a prototypic hereditary neoplasm.. Semin. Oncol. 5:57–60 [Google Scholar]
  51. Knudson AG. 1992. Stem cell regulation, tissue ontogeny, and oncogenic events.. Semin. Cancer Biol. 3:99–106 [Google Scholar]
  52. Knudson AG, Brodetsky AM, Baluda MA. 1967. Transient inhibition of avian myeloblastosis virus reproduction by amethopterin and fluorodeoxyuridine.. J. Virol. 1:1150–57 [Google Scholar]
  53. Knudson AG, Meadows AT, Nichols WW, Hill R. 1976. Chromosomal deletion and retinoblastoma.. N. Engl. J. Med. 295:1120–23 [Google Scholar]
  54. Kobayashi T, Hirayama Y, Kobayashi E, Kubo Y, Hino O. 1995. A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer.. Nat. Genet. 9:70–74 [Google Scholar]
  55. Kojis TL, Gatti RA, Sparkes RS. 1991. The cytogenetics of ataxia telangiectasia.. Cancer Genet Cytogenet 56:143–56 [Google Scholar]
  56. Lane DP, Crawford LV. 1979. T antigen is bound to a host protein in SV40–transformed cells.. Nature 278:261–63 [Google Scholar]
  57. Latif F, Tory K, Gnarra J, Yao M, Duh FM. et al. 1993. Identification of the von Hippel- Lindau disease tumor suppressor gene.. Science 260:1317–20 [Google Scholar]
  58. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J. et al. 1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer.. Cell 75:1215–25 [Google Scholar]
  59. Li FP, Fraumeni JF. 1969. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome.. J. Natl. Cancer Inst. 43:1365–73 [Google Scholar]
  60. Li FP, Fraumeni JF. 1969. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome?. Ann. Intern. Med. 71:747–52 [Google Scholar]
  61. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI. et al. 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome.. Nat. Genet. 16:64–67 [Google Scholar]
  62. Linzer DI, Levine AJ. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells.. Cell 17:43–52 [Google Scholar]
  63. Loeb LA. 1998. Cancer cells exhibit a mutator phenotype.. Adv. Cancer Res. 72:25–56 [Google Scholar]
  64. Look AT. 1997. Oncogenic transcription factors in the human acute leukemias.. Science 278:1059–64 [Google Scholar]
  65. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE. et al. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.. Science 250:1233–38 [Google Scholar]
  66. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L. et al. 1995. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability.. Science 268:1336–38 [Google Scholar]
  67. Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. 1987. Rearrangement of the p53 gene in human osteogenic sarcomas.. Proc. Natl. Acad. Sci. USA 84:7716–19 [Google Scholar]
  68. Matsuoka S, Huang M, Elledge SJ. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase.. Science 282:1893–97 [Google Scholar]
  69. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C. et al. 1993. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A.. Nature 363:458–60 [Google Scholar]
  70. Nishida T, Hirota S, Taniguchi M, Hashimoto K, Isozaki K. et al. 1998. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.. Nat. Genet. 19:323–24 [Google Scholar]
  71. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H. et al. 1991. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.. Science 253:665–69 [Google Scholar]
  72. Nowell PC, Hungerford DA. 1960. A minute chromosome in human chronic granulocytic leukemia.. Science 132:1497 [Google Scholar]
  73. Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC. et al. 1994. Mutation of a mutL homolog in hereditary colon cancer.. Science 263:1625–29 [Google Scholar]
  74. Rennebeck G, Kleymenova EV, Anderson R, Yeung RS, Artzt K, Walker CL. 1998. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development.. Proc. Natl. Acad. Sci. USA 95:15629–34 [Google Scholar]
  75. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J. et al. 1993. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2.. Nature 363:515–21 [Google Scholar]
  76. Rowley JD. 1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.. Nature 243:290–93 [Google Scholar]
  77. Rowley JD. 1998. The critical role of chromosome translocations in human leukemias.. Annu. Rev. Genet. 32:495–519 [Google Scholar]
  78. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR. et al. 2000. Comparative genomics of the eukaryotes.. Science 287:2204–16 [Google Scholar]
  79. Saunders WS, Shuster M, Huang X, Gharaibeh B, Enyenihi AH. et al. 2000. Chromosomal instability and cytoskeletal defects in oral cancer cells.. Proc. Natl. Acad. Sci. USA 97:303–8 [Google Scholar]
  80. Schena M, Larsson LG, Gottardi D, Gaidano G, Carlsson M. et al. 1992. Growth-and differentiation-associated expression of bcl-2 in B-chronic lymphocytic leukemia cells.. Blood 79:2981–89 [Google Scholar]
  81. Schmidt L, Duh F, Chen F, Kishida T, Glenn G. et al. 1997. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas.. Nat. Genet. 16:68–73 [Google Scholar]
  82. Sherr CJ. 1996. Cancer cell cycles.. Science 274:1672–77 [Google Scholar]
  83. Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T. 1992. The transcription factor E2F interacts with the retinoblastoma product and a p107–cyclin A complex in a cell cycle-regulated manner.. Cell 68:157–66 [Google Scholar]
  84. Simpson AJ. 1997. The natural somatic mutation frequency and human carcinogenesis.. Adv. Cancer Res. 71:209–40 [Google Scholar]
  85. Stankovic T, Weber P, Stewart G, Bedenham T, Murray J. et al. 1999. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia.. Lancet 353:26–29 [Google Scholar]
  86. Stehelin D, Varmus HE, Bishop JM, Vogt PK. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA.. Nature 260:170–73 [Google Scholar]
  87. Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA. et al. 1999. The onset and extent of genomic instability in sporadic colorectal tumor progression.. Proc. Natl. Acad. Sci. USA 96:15121–26 [Google Scholar]
  88. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR. et al. 1992. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene.. Science 256:668–70 [Google Scholar]
  89. Temin HM, Mizutani S. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus.. Nature 226:1211–13 [Google Scholar]
  90. Thibodeau SN, Bren G, Schaid D. 1993. Microsatellite instability in cancer of the proximal colon.. Science 260:816–19 [Google Scholar]
  91. Toguchida J, Ishizaki K, Nakamura Y, Sasaki MS, Ikenaga M. et al. 1989. Assignment of common allele loss in osteosarcoma to the subregion 17p13.. Cancer Res. 49:6247–51 [Google Scholar]
  92. Toguchida J, Ishizaki K, Sasaki MS, Ikenaga M, Sugimoto M. et al. 1988. Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma.. Cancer Res. 48:3939–43 [Google Scholar]
  93. Tomlinson IP, Novelli MR, Bodmer WF. 1996. The mutation rate and cancer.. Proc. Natl. Acad. Sci. USA 93:14800–3 [Google Scholar]
  94. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP. et al. 1993. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor.. Cell 72:791–800 [Google Scholar]
  95. Tucker M, Goldstein A, Dean M, Knudson A. 2000. National Cancer Institute Workshop Report: The Phakomatoses Revisited.. J. Natl. Cancer Inst. 92:530–33 [Google Scholar]
  96. Van der Hoeve J. 1932. Eye symptoms in phakomatoses.. Trans. Ophthalmol. Soc. UK 52:380–401 [Google Scholar]
  97. Van Slegtenhorst M, Dehoogt R, Hermans C, Nellist M, Janssen B. et al. 1997. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.. Science 277:805–8 [Google Scholar]
  98. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J. et al. 1990. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus.. Cell 62:187–92 [Google Scholar]
  99. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM. et al. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients.. Science 249:181–86 [Google Scholar]
  100. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M. et al. 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product.. Nature 334:124–29 [Google Scholar]
  101. Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG. 1994. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene.. Proc. Natl. Acad. Sci. USA 91:11413–16 [Google Scholar]
  102. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles.. Cell 70:937–48 [Google Scholar]
  103. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA. et al. 1996. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma.. Nat Genet 12:97–99 [Google Scholar]
/content/journals/10.1146/annurev.genet.34.1.1
Loading
/content/journals/10.1146/annurev.genet.34.1.1
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error