1932

Abstract

Abstract

The 8–9-Mb chromosome is linear, with a “core” containing essential genes and “arms” carrying conditionally adaptive genes that can sustain large deletions in the laboratory. Bidirectional chromosome replication from a central is completed by “end-patching,” primed from terminal proteins covalently bound to the free 5′-ends. Plasmid-mediated conjugation involves movement of double-stranded DNA by proteins resembling other bacterial motor proteins, probably via hyphal tip fusion, mediated by these transfer proteins. Circular plasmids probably transfer chromosomes by transient integration, but linear plasmids may lead the donor chromosome end-first into the recipient by noncovalent association of ends. Transfer of complete chromosomes may be the rule. The recipient mycelium is colonized by intramycelial spreading of plasmid copies, under the control of plasmid-borne “spread” genes. Chromosome partition into prespore compartments of the aerial mycelium is controlled in part by actin- and tubulin-like proteins, resembling MreB and FtsZ of other bacteria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.40.110405.090639
2006-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ge/40/1/annurev.genet.40.110405.090639.html?itemId=/content/journals/10.1146/annurev.genet.40.110405.090639&mimeType=html&fmt=ahah

Literature Cited

  1. Alikhanian SI, Mindlin SZ. 1957. Recombination in Streptomyces rimosus. Nature 180:1208–9 [Google Scholar]
  2. Altenbuchner J, Cullum J. 1985. Structure of an amplifiable DNA sequence in Streptomyces lividans 66. Mol. Gen. Genet. 201:192–97 [Google Scholar]
  3. Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D. 2002. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108:195–205 [Google Scholar]
  4. Badian J. 1936. Über die zytologische Struktur und den Entwicklungszyklus der Actinomyceten. Acta Soc. Bot. Polon. 13:105–26 [Google Scholar]
  5. Bao K, Cohen SN. 2001. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev. 15:1518–27 [Google Scholar]
  6. Bao K, Cohen SN. 2003. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev. 17:774–85 [Google Scholar]
  7. Bayer M, Iberer R, Bischof K, Rassi E, Stabentheiner E. et al. 2001. Functional and mutational analysis of p19, a DNA transfer protein with muramidase activity. J. Bacteriol. 183:3176–83 [Google Scholar]
  8. Begg KJ, Dewar SJ, Donachie WD. 1995. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177:6211–22 [Google Scholar]
  9. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR. et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–47The first complete genome sequence of a Streptomyces species and its special features. [Google Scholar]
  10. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA. et al. 2004. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol: 51:1615–28 [Google Scholar]
  11. Ben-Yehuda S, Fujita M, Liu XS, Gorbatyuk B, Skoko D. et al. 2005. Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17:773–82 [Google Scholar]
  12. Ben-Yehuda S, Rudner DZ, Losick R. 2003. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–36 [Google Scholar]
  13. Bérdy J. 2005. Bioactive microbial metabolites, a personal view. J. Antibiot. 58:1–26 [Google Scholar]
  14. Bibb MJ, Hopwood DA. 1981. Genetic studies of the fertility plasmid SCP2 and its SCP2* variants in Streptomyces coelicolor A3(2). J. Gen. Microbiol. 126:427–42 [Google Scholar]
  15. Bibb MJ, Ward JM, Hopwood DA. 1978. Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274:398–400 [Google Scholar]
  16. Bradley SG, Lederberg J. 1956. Heterokaryosis in Streptomyces. J. Bacteriol. 72:219–25 [Google Scholar]
  17. Braendle DH, Szybalski W. 1957. Genetic interaction among streptomycetes: heterokaryosis and synkaryosis. Proc. Natl. Acad. Sci. USA 43:947–55 [Google Scholar]
  18. Brolle DF, Pape H, Hopwood DA, Kieser T. 1993. Analysis of the transfer region of the Streptomyces plasmid SCP2. Mol. Microbiol. 10:157–70 [Google Scholar]
  19. Catakli S, Andrieux A, Leblond P, Decaris B, Dary A. 2003. Spontaneous chromosome circularization and amplification of a new amplifiable unit of DNA belonging to the terminal inverted repeats in Streptomyces ambofaciens ATCC 23877. Arch. Microbiol. 179:387–93 [Google Scholar]
  20. Chaconas G, Chen CW. 2005. Replication of linear bacterial chromosomes: no longer going round in circles. In The Bacterial Chromosome ed. NP Higgins pp. 525–39 Washington, DC: ASM Press [Google Scholar]
  21. Chang PC, Cohen SN. 1994. Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265:952–54Discovery of a novel mechanism of “end-patching” DNA synthesis to complete copies of a Streptomyces linear replicon. [Google Scholar]
  22. Chater KF, Losick R. 1997. Mycelial life style of Streptomyces coelicolor A3(2) and its relatives. In Bacteria as Multicellular Organisms ed. JA Shapiro, M Dworkin pp. 149–82 New York: Oxford Univ. Press [Google Scholar]
  23. Chen CW. 1996. Complications and implications of linear bacterial chromosomes. Trends Genet. 12:192–96 [Google Scholar]
  24. Chen CW. 2002. Once the circle has been broken. Trends Genet. 18:522–29A review of the special features of Streptomyces linear chromosomes by their discoverer. [Google Scholar]
  25. Clewell DB. ed. 1993. Bacterial Conjugation New York: Plenum
  26. Curtiss R, Renshaw J. 1969. Kinetics of transfer and recombinant production in F+ X F matings in Escherichia coli K-12. Genetics 63:39–52 [Google Scholar]
  27. Ducote MJ, Prakash S, Pettis GS. 2000. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J. Bacteriol. 182:6834–41 [Google Scholar]
  28. Dyson P, Schrempf H. 1987. Genetic instability and DNA amplification in Streptomyces lividans 66. J. Bacteriol. 169:4796–803 [Google Scholar]
  29. Errington J, Bath J, Wu LJ. 2001. DNA transport in bacteria. Nat. Rev. Mol. Cell Biol. 2:538–45 [Google Scholar]
  30. Errington J, Murray H, Wu LJ. 2005. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos. Trans. R. Soc. London Ser. B 360:497–505 [Google Scholar]
  31. Flärdh K. 2003. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol. Microbiol. 49:1523–36 [Google Scholar]
  32. Flärdh K. 2003. Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol. 6:564–71 [Google Scholar]
  33. Gerdes K, Møller-Jensen J, Ebersbach G, Kruse T, Nordström K. 2004. Bacterial mitotic machineries. Cell 116:359–66 [Google Scholar]
  34. Gerdes K, Møller-Jensen J, Jensen RB. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37:455–66 [Google Scholar]
  35. Gitai Z. 2005. The new bacterial cell biology: moving parts and subcellular architecture. Science 120:577–86 [Google Scholar]
  36. Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. 2005. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–41 [Google Scholar]
  37. Glass NL, Rasmussen C, Roca MG, Read ND. 2004. Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol. 12:135–41 [Google Scholar]
  38. Grantcharova N, Lustig U, Flärdh K. 2005. Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 187:3227–37 [Google Scholar]
  39. Grohmann E, Muth G, Espinosa M. 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:277–301 [Google Scholar]
  40. Hagège J, Pernodet JL, Sezonov G, Gerbaud C, Friedman A, Guerineau M. 1993. Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J. Bacteriol. 175:5529–38 [Google Scholar]
  41. Haug I, Weissenborn A, Brolle D, Bentley S, Kieser T, Altenbuchner J. 2003. Streptomyces coelicolor A3(2) plasmid SCP2*: deductions from the complete sequence. Microbiology 149:505–13 [Google Scholar]
  42. Hopwood DA. 1957. Genetic recombination in Streptomyces coelicolor. J. Gen. Microbiol. 16:ii–iii [Google Scholar]
  43. Hopwood DA. 1959. Linkage and the mechanism of recombination in Streptomyces coelicolor. Ann. NY Acad. Sci. 81:887–98 [Google Scholar]
  44. Hopwood DA. 1965. New data on the linkage map of Streptomyces coelicolor. Genet. Res. 6:248–62 [Google Scholar]
  45. Hopwood DA. 1965. A circular linkage map in the actinomycete Streptomyces coelicolor. J. Mol. Biol. 12:514–16 [Google Scholar]
  46. Hopwood DA. 1966. Lack of constant genome ends in Streptomyces coelicolor. Genetics 54:1177–84 [Google Scholar]
  47. Hopwood DA. 1967. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev. 31:373–403 [Google Scholar]
  48. Hopwood DA. 1999. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. J. Gen. Microbiol. 145:2183–202A chronological account of the main developments in Streptomyces genetics up to the millennium. [Google Scholar]
  49. Hopwood DA. 2006. Streptomyces in Nature and Medicine. The Antibiotic Makers. New York: Oxford Univ. Press. In press
  50. Hopwood DA, Chater KF, Dowding JE, Vivian A. 1973. Advances in Streptomyces coelicolor genetics. Bacteriol. Rev. 37:371–405 [Google Scholar]
  51. Hopwood DA, Glauert AM. 1960. Observations on the chromatinic bodies of Streptomyces coelicolor. J. Biophys. Biochem. Cytol. 8:257–65 [Google Scholar]
  52. Hopwood DA, Harold RJ, Vivian A, Ferguson HM. 1969. A new kind of fertility variant in Streptomyces coelicolor. Genetics 62:461–77 [Google Scholar]
  53. Hopwood DA, Kieser T, Wright HM, Bibb MJ. 1983. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J. Gen. Microbiol. 129:2257–69 [Google Scholar]
  54. Hopwood DA, Lydiate DJ, Malpartida F, Wright HM. 1985. Conjugative plasmids in Streptomyces. In Plasmids in Bacteria ed. D Helinski, SN Cohen, DB Clewell, DA Jackson, A Hollaender pp. 615–34 New York: Plenum [Google Scholar]
  55. Hopwood DA, Sermonti G, Spada-Sermonti I. 1963. Heterozygous clones in Streptomyces coelicolor. J. Gen. Microbiol. 30:249–60 [Google Scholar]
  56. Hopwood DA, Wright HM. 1976. Interactions of the plasmid SCP1 with the chromosome of Streptomyces coelicolor A3(2). In Proc. Int. Symp. Genet. Ind. Micro-Organisms, 2nd ed. KD MacDonald pp. 607–19 London: Academic [Google Scholar]
  57. Hopwood DA, Wright HM. 1978. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol. Gen. Genet. 162:307–17 [Google Scholar]
  58. Huang C, Lin YS, Yang YL, Huang SW, Chen CW. 1998. The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol. Microbiol. 28:905–16 [Google Scholar]
  59. Huang CH, Chen CY, Tsai HH, Chen C, Lin YS, Chen CW. 2003. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol. Microbiol. 47:1563–76 [Google Scholar]
  60. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H. et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526–31The second complete Streptomyces genome sequence, of an important industrial antibiotic-producer, with interesting comparative aspects. [Google Scholar]
  61. Inoue S, Higashiyama K, Uchida T, Hiratsu K, Kinashi H. 2003. Chromosome circularization in Streptomyces griseus by nonhomologous recombination of deletion ends. Biosci. Biotechnol. Biochem. 67:1101–8 [Google Scholar]
  62. Jacob F, Brenner S, Cuzin F. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28:329–48 [Google Scholar]
  63. Jahn R, Lang T, Südhof TC. 2003. Membrane fusion. Cell 112:519–33 [Google Scholar]
  64. Jakimowicz D, Chater K, Zakrzewska-Czerwinska J. 2002. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol. Microbiol. 45:1365–77A good example of the use of molecular cytology in Streptomyces, elucidating the mechanism of DNA partition. [Google Scholar]
  65. Jakimowicz D, Gust B, Zakrzewska-Czerwinska J, Chater KF. 2005. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae. J. Bacteriol. 187:3572–80 [Google Scholar]
  66. Jakimowicz D, Majkadagger J, Konopa G, Wegrzyn G, Messer W. et al. 2000. Architecture of the Streptomyces lividans DnaA protein-replication origin complexes. J. Mol. Biol. 298:351–64 [Google Scholar]
  67. Jones LJ, Carballido-Lopez R, Errington J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–22 [Google Scholar]
  68. Karoonuthaisiri N, Weaver D, Huang J, Cohen SN, Kao CM. 2005. Regional organization of gene expression in Streptomyces coelicolor. Gene 353:53–66 [Google Scholar]
  69. Kataoka M, Seki T, Yoshida T. 1991. Regulation and function of the Streptomyces plasmid pSN22 genes involved in pock formation and inviability. J. Bacteriol. 173:7975–81 [Google Scholar]
  70. Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. 1990. New topoisomerase essential for chromosome segregation in E. coli.. Cell 63:393–404 [Google Scholar]
  71. Kendall KJ, Cohen SN. 1988. Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J. Bacteriol. 170:4634–51 [Google Scholar]
  72. Kieser T, Hopwood DA, Wright HM, Thompson CJ. 1982. pIJI01, a multicopy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol. Gen. Genet. 185:223–38 [Google Scholar]
  73. Kieser HM, Kieser T, Hopwood DA. 1992. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J. Bacteriol. 174:5496–507 [Google Scholar]
  74. Kim K, Calcutt MJ, Schmidt FJ, Chater KF. 2000. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J. Bacteriol. 182:1313–20 [Google Scholar]
  75. Kinashi H, Shimaji M, Sakai A. 1987. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature 328:454–56 [Google Scholar]
  76. Klieneberger-Nobel E. 1947. The life cycle of sporing Actinomyces as revealed by a study of their structure and septation. J. Gen. Microbiol. 1:22–32 [Google Scholar]
  77. Kline-Smith SL, Walczak CE. 2004. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15:317–27 [Google Scholar]
  78. Kosono S, Kataoka M, Seki T, Yoshida T. 1996. The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol. Microbiol. 19:397–405 [Google Scholar]
  79. Lemon KP, Grossman AD. 2001. The extrusion-capture model for chromosome partitioning in bacteria. Genes Dev. 15:2031–41 [Google Scholar]
  80. Lin YS, Kieser HM, Hopwood DA, Chen CW. 1993. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol. Microbiol. 10:923–33Discovery of the linearity of Streptomyces chromosomes. [Google Scholar]
  81. Low KB. 1996. Hfr strains of Escherichia coli K-12. In Escherichia coli and Salmonella ed. FC Neidhardt pp. 2402–5 Washington, DC: ASM Press [Google Scholar]
  82. Lydiate DJ, Malpartida F, Hopwood DA. 1985. The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35:223–35 [Google Scholar]
  83. Maas RM, Götz J, Wohlleben W, Muth G. 1998. The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932. differs in its transfer functions from other Streptomyces rolling-circle-type plasmids. Microbiology 144:2809–17 [Google Scholar]
  84. Margolin W. 2005. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell. Biol. 6:862–71 [Google Scholar]
  85. Mazodier P, Petter R, Thompson C. 1989. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171:3583–85 [Google Scholar]
  86. Mazza P, Noens EE, Schirner K, Grantcharova N, Mommaas AM. et al. 2006. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60:838–52Discovery of an essential role for MreB in the correct processing of DNA into Streptomyces spores. [Google Scholar]
  87. McCormick JR, Su EP, Dricks A, Losick R. 1994. Growth and viability of Streptomyces coelicolor mutant for the cell division gene, ftsZ. Mol. Microbiol. 14:243–54 [Google Scholar]
  88. Mohl DA, Easter J, Gober JW. 2001. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol. 42:741–55 [Google Scholar]
  89. Muth G, Wohlleben W, Pühler A. 1988. The minimal replicon of the Streptomyces ghanaensis plasmid pSG5 identified by subcloning and Tn5 mutagenesis. Mol. Gen. Genet. 211:424–29 [Google Scholar]
  90. Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP. 2005. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol. Microbiol. 58:929–44 [Google Scholar]
  91. Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division and plasmid proliferation. Proc. Nat. Acad. Sci. USA 80:4784–88 [Google Scholar]
  92. Pandza S, Biukovic G, Paravic A, Dadbin A, Cullum J, Hranueli D. 1998. Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends. Mol. Microbiol. 28:1165–76 [Google Scholar]
  93. Pettis GS, Cohen SN. 1994. Transfer of the plJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol. Microbiol. 13:955–64 [Google Scholar]
  94. Possoz C, Ribard C, Gagnat J, Pernodet JL, Guerineau M. 2001. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol. Microbiol. 42:159–66The only experimental evidence for transfer of double-stranded DNA during plasmid-mediated conjugation in Streptomyces. [Google Scholar]
  95. Qin Z, Cohen SN. 1998. Replication at the telomeres of the Streptomyces linear plasmid pSLA2. Mol. Microbiol. 28:893–903 [Google Scholar]
  96. Reeves CD. 2003. The enzymology of combinatorial biosynthesis. Crit. Rev. Biotechnol. 23:95–147 [Google Scholar]
  97. Reimann C, Haas D. 1993. Mobilization of chromosomes and nonconjugative plasmids by cointegrative mechanisms. See Ref. 24a pp. 137–88
  98. Reuther J, Gekeler C, Tiffert Y, Wohlleben W, Muth G. 2006. Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol. Microbiol. In press A seminal paper that establishes the Tra protein of Streptomyces plasmids as an ATPase, which binds to a cis-acting site on the mobilized plasmid and is located at hyphal tips, the likely site of hyphal fusion during conjugation. [Google Scholar]
  99. Robinow CF. 1956. The chromatin bodies of bacteria. In Bacterial Anatomy, Symp. Soc. Gen. Microbiol., 6th ed. ETC Spooner, BAD Stocker pp. 181–214 Cambridge: CUP [Google Scholar]
  100. Robinson M, Lewis E, Napier E. 1981. Occurrence of reiterated DNA sequences in strains of Streptomyces produced by an interspecific protoplast fusion. Mol. Gen. Genet. 182:336–40 [Google Scholar]
  101. Saito H. 1958. Heterocaryosis and genetic recombination in Streptomyces griseoflavus. Can. J. Microbiol. 4:571–80 [Google Scholar]
  102. Sakaguchi K. 1990. Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol. Rev. 54:66–74 [Google Scholar]
  103. Salas M. 1991. Protein-priming of DNA replication. Annu. Rev. Biochem. 60:39–71 [Google Scholar]
  104. Schneider D, Bruton CJ, Chater KF. 2000. Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in Streptomyces coelicolor A3(2). Mol. Gen. Genet. 263:543–53 [Google Scholar]
  105. Schwedock J, McCormick JR, Angert ER, Dodwell JR, Losick R. 1997. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25:847–58 [Google Scholar]
  106. Sermonti G, Mancinelli A, Spada-Sermonti I. 1960. Heterozygous clones (“heteroclones”) in Streptomyces coelicolor A3(2). Genetics 45:669–72 [Google Scholar]
  107. Sermonti G, Spada-Sermonti I. 1955. Genetic recombination in Streptomyces. Nature 176:121 [Google Scholar]
  108. Servín-González L. 1996. Identification and properties of a novel clt locus in the Streptomyces phaeochromogenes plasmid pJV1. J. Bacteriol. 178:4323–26 [Google Scholar]
  109. Sharp MD, Pogliano K. 2002. Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295:137–39 [Google Scholar]
  110. Sharp MD, Pogliano K. 2005. The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J. Bacteriol. 185:2005–8 [Google Scholar]
  111. Shen B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7:285–95 [Google Scholar]
  112. Soufo HJ, Graumann PL. 2003. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr. Biol. 13:1916–20 [Google Scholar]
  113. Stahl FW, Steinberg CM. 1964. The theory of formal phage genetics for circular maps. Genetics 50:531–38 [Google Scholar]
  114. Tamm LK, Crane J, Kiessling V. 2003. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr. Opin. Struct. Biol. 13:453–66 [Google Scholar]
  115. Vivian A, Hopwood DA. 1973. Genetic control of fertility in Streptomyces coelicolor A3(2): new kinds of donor strains. J. Gen. Microbiol. 76:147–62 [Google Scholar]
  116. Volff JN, Altenbuchner J. 1998. Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27:239–46 [Google Scholar]
  117. Wang SJ, Chang HM, Lin YS, Huang CH, Chen CW. 1999. Streptomyces genomes: circular genetic maps from the linear chromosomes. Microbiology 145:2209–20 [Google Scholar]
  118. Weaver D, Karoonuthaisiri N, Tsai H-H, Huang C-H, Ho M-L. et al. 2004. Genome plasticity in Streptomyces: identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome. Mol. Microbiol. 51:1535–50 [Google Scholar]
  119. Weiss DS. 2004. Bacterial cell division and the septal ring. Mol. Microbiol. 54:588–97 [Google Scholar]
  120. Weissman KJ. 2004. Polyketide biosynthesis: understanding and exploiting modularity. Philos. Trans. R. Soc. London A 362:2671–90 [Google Scholar]
  121. Wenner T, Roth V, Fischer G, Fourrier C, Aigle B. et al. 2003. End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens. Mol. Microbiol. 50:411–25 [Google Scholar]
  122. Wilkins B, Lanka E. 1993. DNA processing and replication during plasmid transfer between gram-negative bacteria. See Ref. 24a pp. 105–36
  123. Wu JJ, Lewis PJ, Allmansberger R, Hauser PM, Errington J. 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9:1316–26 [Google Scholar]
  124. Yamasaki M, Kinashi H. 2004. Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid SCP1. J. Bacteriol. 186:6553–59 [Google Scholar]
  125. Yamasaki M, Redenbach M, Kinashi H. 2001. Integrated structures of the linear plasmid SCP1 in two bidirectional donor strains of Streptomyces coelicolor A3(2). Mol. Gen. Genet. 264:634–43 [Google Scholar]
  126. Yang CC, Huang CH, Li CY, Tsay YG, Lee SC, Chen CW. 2002. The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol. Microbiol. 43:297–305 [Google Scholar]
  127. Yang MC, Losick R. 2001. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J. Bacteriol. 183:5180–86An elegant cytological demonstration of an association between chromosome ends in vegetative Streptomyces mycelium. [Google Scholar]
/content/journals/10.1146/annurev.genet.40.110405.090639
Loading
/content/journals/10.1146/annurev.genet.40.110405.090639
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error