1932

Abstract

The rate of progression of HIV disease may be substantially different among HIV-infected individuals. Following infection of the host with any virus, the delicate balance between virus replication and the immune response to the virus determines both the outcome of the infection, i.e. the persistence versus elimination of the virus, and the different rates of progression.

During primary HIV infection, a burst of viremia occurs that disseminates virus to the lymphoid organs. A potent immune response ensues that substantially, but usually not completely, curtails virus replication. This inability of the immune system to completely eliminate the virus leads to establishment of chronic, persistent infection that over time leads to profound immunosuppression. The potential mechanisms of virus escape from an otherwise effective immune response have been investigated. Clonal deletion of HIV-specific cytotoxic T-cell clones and sequestration of virus-specific cytotoxic cells away from the major site of virus replication represent important mechanisms of virus escape from the immune response that favor persistence of HIV. Qualitative differences in the primary immune response to HIV (i.e. mobilization of a restricted versus broader T-cell receptor repertoire) are associated with different rates of disease progression. Therefore, the initial interaction between the virus and immune system of the host is critical for the subsequent clinical outcome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.50.1.825
1996-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/50/1/annurev.micro.50.1.825.html?itemId=/content/journals/10.1146/annurev.micro.50.1.825&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams DI, Lewis BJ, Beckstead JH, Casavant CA, Drew WL. 1984. Persistent diffuse lymphadenopathy in homosexual men: endpoint or prodrome?. Ann. Intern. Med. 100:801–8 [Google Scholar]
  2. Armstrong JA, Dawkins RL, Horne R. 1985. Retroviral infection of accessory cells and the immunological paradox in AIDS. Immunol. Today 6:121–22 [Google Scholar]
  3. Asjo B, Sharma UK, Morfeldt-Manson L, Magnusson A. 1990. Naturally occurring HIV-1 isolates with differences in replicative capacity are distinguished by in situ hybridization of infected cells. AIDS Res. Hum. Retroviruses 6:1177–82 [Google Scholar]
  4. Autran B, Leqac E, Blanc C, Debre PA. 1995. Tho-Th2-like function of CD4+ CD7− T helper cells from normal donors and HIV infected patients. J. Immunol. 154:1408–17 [Google Scholar]
  5. Baier M, Werner A, Bannert N, Metzner K, Kurth R. 1995. HIV suppression by interleukin-16. Nature 378:563 [Google Scholar]
  6. Berman PW, Gregory TJ, Riddle L, Nakamura GR, Champe MA. et al. 1990. Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. Nature 345:622–25 [Google Scholar]
  7. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. 1994. CTL activity associated with control of viremia in primary HIV-1 infection. J. Virol. 68:6103–10 [Google Scholar]
  8. Bou-Habib DC, Roderiquez G, Oravecz T, Berman PW, Lusso P. et al. 1994. Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization.. J. Virol. 68:6006–13 [Google Scholar]
  9. Broder CC, Earl PL, Long D, Abedon ST, Moss B. et al. 1994. Antigenic implica–tions of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proc. Natl. Acad. Sci. USA 91:11699–11703 [Google Scholar]
  10. Buchbinder SP, Katz MH, Hessol NA, O'Malley PM, Holmberg SD. 1994. Long-term HIV-infection without immunologic progression. AIDS 8:1123–28 [Google Scholar]
  11. Bukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M. 1991. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 18:423–27 [Google Scholar]
  12. Cao Y, Quin L, Zhang L, Safrit J, Ho DD. 1995. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N. Engl. J. Med. 26:201–8 [Google Scholar]
  13. Chakrabarti L, Isola P, Cumont M-C, Claessens-Maire M-A, Hurtrel M. et al. 1994. Early stages of simian immunodeficiency virus infection in lymph nodes. Am. J. Pathol. 144:1226–34 [Google Scholar]
  14. Cheng-Mayer C, Homsy J, Evans LA, Levy JA. 1988. Identification of human immunodeficiency virus subtypes with distinct patterns of sensitivity to serum neutralization. Proc. Natl. Acad. Sci. USA 85:2815–19 [Google Scholar]
  15. Clark SJ, Saag MS, Decker WD, Campbell-Hill S, Roberson JL. et al. 1991. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N. Engl. J. Med. 324:954–60 [Google Scholar]
  16. Clerici M, Shearer GM. 1993. A TH1 TH2 switch is a critical step in the etiology of HIV infection. Immunol. Today 14:107–11 [Google Scholar]
  17. Clerici M, Stocks NI, Zajac RA, Boswell RN, Bernstein DC. et al. 1989. Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV-seropositive individuals. Nature 339:383–85 [Google Scholar]
  18. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC. et al. 1995. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–15 [Google Scholar]
  19. Coffin JM. 1995. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–89 [Google Scholar]
  20. Cohen OJ, Pantaleo G, Holodniy, Schnittman S, Niu M. et al. 1995. Decreased human immunodeficiency virus type 1 plasma viremia during antiretroviral therapy reflects downregulation of viral replication in lymphoid tissue. Proc. Natl. Acad. Sci. USA 92:6017–21 [Google Scholar]
  21. Daar ES, Moudgil T, Meyer RD, Ho DD. 1991. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324:961–64 [Google Scholar]
  22. Denis M, Ghadirian E. 1994. Mycobacterium avium infection in HIV-1-infected subjects increases monokine secretion and is associated with enhanced viral load and diminished immune response to viral antigens.. Clin. Exp. Immunol. 97:76–82 [Google Scholar]
  23. Easterbrook PJ. 1994. Non-progression in HIV infection. AIDS 8:1179–82 [Google Scholar]
  24. Embretson J, Zupancic M, Ribas JL, Burke A, Tenner-Racz K. et al. 1993. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–62 [Google Scholar]
  25. Emilie D, Peuchmaur M, Maillot M, Crevon M, Brousse N. et al. 1990. Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes. J. Clin. Invest. 86:148–59 [Google Scholar]
  26. Emini EA, Nara PL, Schlief Wa. 1990. Antibody-mediated in vitro neutralization of human immunodeficiency virus type 1 abolishes infectivity for chimpanzees. J. Virol. 64:3674–78 [Google Scholar]
  27. Fauci AS. 1993. Multifactorial nature of human immunodeficiency virus diseases: implications for therapy. Science 262:1011–18 [Google Scholar]
  28. Fauci AS, Lane HC. 1991. The acquired immunodeficiency syndrome (AIDS). In Harrison's Principles of Internal Medicine, Vol 2, ed. JD Wilson, E Braunwald, KJ Isselbacher, et al 1402–10 12th ed. New York: McGraw-Hill
  29. Fauci AS, Masur H, Gelmann EP, Markham PD, Hahn BH. et al. 1985. NIH Conference. The acquired immunodeficiency syndrome: an update. Ann. Intern. Med. 102:800–13 [Google Scholar]
  30. Fox CH, Tenner-Racz K, Racz P, Firpo A, Pizzo PA. et al. 1991. Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA. J. Infect. Dis. 164:1051–57 [Google Scholar]
  31. Girard M, Kieny M-P, Pinter A. 1991. Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 88:542–46 [Google Scholar]
  32. Graziosi C, Gantt KR, Vaccareza M, Demarest JF, Daucher MB. et al. Kinetics of cytokine expression during primary human immunodeficiency virus type 1 (HIV-1) infection. Proc. Natl. Acad. Sci. USA. In press [Google Scholar]
  33. Graziosi C, Pantaleo G, Butini L, Demarest JF, Saag MS. et al. 1993. Kinetics of HIV DNA and RNA synthesis during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 90:6505–9 [Google Scholar]
  34. Graziosi C, Pantaleo G, Gantt KR, Demarest JF, Cohen OJ, Fauci AS. 1994. Lack of evidence for dichotomy of TH1 and Th2 predominance in HIV-infected individuals.. Science 265:248–52 [Google Scholar]
  35. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schrieber, Chisari FV. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25–36 [Google Scholar]
  36. Haynes BF. 1992. Immune responses to HIV infection. In AIDS, Etiology, Diagnosis, Treatment and Prevention, ed. VT DeVita, S Hellman, SA Rosenberg 77–86 3rd ed. Philadelphia: Lippincott –
  37. Haynes BF, Pantaleo G, Fauci AS. 1996. Toward an understanding of the correlates of protective immunity to HIV infection. Science 271:324–28 [Google Scholar]
  38. Health SL, Tew JG, Szakal AK, Burton GF. 1995. Follicular dendritic cells and human immunodeficiency virus. Nature 377:740–44 [Google Scholar]
  39. Heng MCY, Heng SY, Allen SG. 1994. Co-infection and synergy of human immunodeficiency virus-1 and herpes simplex virus-1. Lancet 343:255–58 [Google Scholar]
  40. Ho DD. 1992. HIV-1 viraemia and influenza. Lancet. 3391549
  41. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM. et al. 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–26 [Google Scholar]
  42. Homsy J, Meyer M, Levy J. 1990. Serum enhancement of human immunodeficiency virus (HIV) infection correlates with disease in HIV-infected individuals. J. Virol. 64:1437–40 [Google Scholar]
  43. Israel-Biet D, Cadranel J, Even P. 1993. Human immunodeficiency virus production by alveolar lymphocytes is increased during Pneumocystis carinii pneumonia. Am. Rev. Respir. Dis. 148:1308–12 [Google Scholar]
  44. Kirchhoff F, Greenough TC, Brettler DB, Sullivan L, Desrosiers RC. 1995. Brief report: absence of intact nef sequences in long-term survivor with non progressive HIV-1 infection. N. Engl. J. Med. 332:228–32 [Google Scholar]
  45. Koot M, Keet IPM, Vos AHV, DeGoede REY, Roos MTHL. et al. 1993. Prognostic value of human immunodeficiency virus type 1 biological phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann. Intern. Med. 118:681–88 [Google Scholar]
  46. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G. et al. 1994. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68:4650–55 [Google Scholar]
  47. Laal S, Burda S, Gorny MK, Karwowska S, Buchbinder A. et al. 1994. Synergistic neutralization of human immunodeficiency virus type 1 by combinations of human monoclonal antibodies. J. Virol. 68:4001–8 [Google Scholar]
  48. Levy JA. 1993. HIV pathogenesis and long-term survival. AIDS 7:1401–10 [Google Scholar]
  49. Lifson AR, Buchbinder SP, Sheppard HW. 1991. Long-term human immunodeficiency virus infection in asymptomatic homosexual and bisexual men with normal CD4+ lymphocyte counts: immunologic and virologic characteristics. J. Infect. Dis. 163:959–65 [Google Scholar]
  50. Mackewicz CE, Yang LC, Lifson JD, Levy JA. 1994. Non-cytolytic CD8 T-cell anti-HIV responses in primary HIV-1 infection. Lancet 344:1671–1673 [Google Scholar]
  51. Mackewicz CF, Ortega HW, Levy JA. 1991. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individuals. J. Clin. Invest. 87:1462–66 [Google Scholar]
  52. Maggi E, Mazzetti M, Ravina A, Annunziato F, DeCarli M. et al. 1994. Ability of HIV to promote a TH11 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science 265:244–48 [Google Scholar]
  53. Maryanski JL, Jongeneel CV, Bucher P, Casanova J-L, Walker PR. 1996. Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: A high magnitude CD8 response is comprised of very few clones. Immunity 4:47–55 [Google Scholar]
  54. Matthews TJ, Langlois AJ, Robey WG, Chang NT, Gallo RC. et al. 1986. Restricted neutralization of divergent human T-lymphotropic virus type III isolates by antibodies to the major envelope glycoprotein. Proc. Natl. Acad. Sci. USA 83:9709–13 [Google Scholar]
  55. McKeating JJ, Cordell J, Dean CJ, Balfe P. 1992. Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type 1 gp120. Virology 191:732–42 [Google Scholar]
  56. Meier UC, Klenerman P, Griffin P, James W, Koppe B. et al. 1995. Cytotoxic T lymphocyte lysis inhibited by viable HIV mutants. Science 270:1360–62 [Google Scholar]
  57. Meyaard L, Otto SA, Keet IP, van Lier RAW, Miedema F. 1994. Changes in cytokine secretion patterns of CD4+ T-cell clones in human immunodeficiency virus infection. Blood 84:4262–68 [Google Scholar]
  58. Montefiori DC, Graham BS, Zhou J, Zhou J, Bucco RA. et al. 1993. V3-specific neutralizing antibodies in sera from HIV-1 gp160-immunized volunteers block virus fusion and act synergistically with human monoclonal antibody to the conformation-dependent CD4 binding site of gp120. J. Clin. Invest. 92:840–47 [Google Scholar]
  59. Moore JP, Cao Y, Ho DD, Koup RA. 1994. Development of the anti-gp120 antibody responses during seroconversion to human immunodeficiency virus type 1. J. Virol. 68:5142–55 [Google Scholar]
  60. Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F. et al. 1994. Major expansion of CD8+ T cells with a predominant V usage during the primary immune response to HIV. Nature 370:463–67 [Google Scholar]
  61. Pantaleo G, Demarest JF, Vaccarezza M, Graziosi C, Bansal GP. et al. 1995. Effect of anti-V3 antibodies on cell-free and cell-to-cell human immunodeficiency virus transmission. Eur. J. Immunol. 25:226–31 [Google Scholar]
  62. Pantaleo G, Fauci AS. 1994. Tracking HIV during disease progression. Curr. Opin. Immunol. 6:600–4 [Google Scholar]
  63. Pantaleo G, Craziosi C, Fauci AS. 1993. The role of lymphoid organs in the pathogenesis of HIV infection. Sem. Immunol. 5:157–63 [Google Scholar]
  64. Pantaleo G, Fauci AS. 1995. New concepts in the immunopathogenesis of HIV infection. Annu. Rev. Immunol. 13:487–512 [Google Scholar]
  65. Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM. et al. 1991. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 88:9838–42 [Google Scholar]
  66. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M. et al. 1993. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–59 [Google Scholar]
  67. Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza M. et al. 1994. Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol. Rev. 140:105–30 [Google Scholar]
  68. Pantaleo G, Graziosi C, Fauci AS. 1993. The immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328:327–35 [Google Scholar]
  69. Pantaleo G, Graziosi C, Fauci AS. 1993. The role of lymphoid organs in the immunopathogenesis of HIV infection. AIDS 7:S19–S23 [Google Scholar]
  70. Pantaleo G, Menzo S, Vaccarezza M, Graziosi C, Cohen OJ. et al. 1995. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N. Engl. J. Med. 332:209–16 [Google Scholar]
  71. Phair JP. 1994. Keynote address: variations in the natural history of HIV infection. AIDS Res. Hum. Retroviruses 10:883–85 [Google Scholar]
  72. Phillips RE, Rowland-Jones S, Nizon DF, Gotch FM, Edwards JP. et al. 1991. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453–59 [Google Scholar]
  73. Piatak M, Saag MS, Yang LC, Clark SJ, Kappes JC. et al. 1993. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749–54 [Google Scholar]
  74. Poli G, Fauci AS. 1992. The effect of cytokines and pharmacologic agents on chronic HIV infection.. AIDS Res. Hum. Retroviruses 8:191–97 [Google Scholar]
  75. Poli G, Pantaleo G, Fauci AS. 1993. Immunopathogenesis of human immunodeficiency virus infection. Clin. Infect. Dis. 17 (Suppl. 1 :224–29 [Google Scholar]
  76. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC. et al. 1988. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–92 [Google Scholar]
  77. Reimann KA, Tenner-Racz K, Racz P, Montefiori DC, Yasutomi Y. et al. 1994. Immunopathogenic events in acute infection of Rhesus monkeys with simian immunodeficiency virus of Macaques.. J. Virol. 68:2362–70 [Google Scholar]
  78. Robert-Guroff M, Brown M, Gallo RC. 1985. HTLV-III-neutralizing antibodies in patients with AIDS and AIDS-related complex. Nature 316:72–74 [Google Scholar]
  79. Robinson WE, Montefiori DC, Mitchell W. 1989. Antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection in vitro by serum from HIV-1 infected and passively immunized chimpanzees. Proc. Natl. Acad. Sci. USA 86:4710–14 [Google Scholar]
  80. Robinson WE, Kawamura T, Gorny MK. 1990. Human monoclonal antibodies to the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 enhance HIV-1 infection in vitro. Proc. Natl. Acad. Sci. USA 87:3815–19 [Google Scholar]
  81. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J. et al. 1991. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279–82 [Google Scholar]
  82. Sattentau QJ, Moore JP. 1995. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med. 182:185–96 [Google Scholar]
  83. Schellekens PT, Tersmette M, Roos MT, Keet RP, DeWolf F. et al. 1992. Biphasic rate of CD4+ cell count decline during progression to AIDS correlates with HIV-1 phenotype. AIDS 6:665–69 [Google Scholar]
  84. Schrager LJ, Young JM, Fowler MG, Mathieson BJ, Vermund SH. 1994. Long-term survivors of HIV-1 infection: definitions and research challenges. AIDS 8:S95–S108 [Google Scholar]
  85. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede REY. et al. 1992. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J. Virol. 66:1354–60 [Google Scholar]
  86. Seder RA, Grabstein KH, Berzofsky JA, McDyer JF. 1995. Cytokine interactions in human immunodeficiency virus-infected individuals: roles of interleukin (IL)-2, IL-12, and IL-15. J. Exp. Med. 182:1067–77 [Google Scholar]
  87. Sheppard HW. 1993. 9th Intl. Conf. AIDS. Berlin, June 6–11 9:46
  88. Sheppard HW, Lang W, Ascher MS, Vittinghoff E, Winkelstein W. 1993. The characterization of non-progressors: long-term HIV-1 infection with stable CD4+ T-cell levels. AIDS 7:1159–66 [Google Scholar]
  89. Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H. 1992. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am. J. Pathol. 140:15–22 [Google Scholar]
  90. Sullivan N, Sun Y, Li J, Hofmann W, Sodroski J. 1995. Replication function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J. Virol. 69:4413–22 [Google Scholar]
  91. Tenner-Racz K, Racz P, Dietrich M, Karin P. 1985. Altered dendritic follicular cells and virus-like particles in AIDS and AIDS related lymphadenopathy. Lancet i:105–6 [Google Scholar]
  92. Tersmette M, de Goede RE, Al BJ, Winkel IN, Gruters RA. et al. 1988. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J. Virol. 62:2026–32 [Google Scholar]
  93. Tersmette M, Gruters RA, de Wolf F, de Goede RE, Lange JM. et al. 1989. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J. Virol. 63:2118–25 [Google Scholar]
  94. Tilley SA, Honnen WJ, Racho ME, Chou T-C, Pinter A. 1992. Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4−binding site of gp120. AIDS Res. Hum. Retroviruses 8:461–67 [Google Scholar]
  95. Tindall B, Cooper DA. 1991. Primary HIV infection: host responses and intervention strategies. AIDS 5:1–14 [Google Scholar]
  96. Torseth JW, Berman PW, Merigan TC. 1988. Recombinant HIV structural proteins detect specific cellular immunity in vitro in infected individuals. AIDS Res. Hum. Retroviruses 4:23–30 [Google Scholar]
  97. Urban JJ, Katona IM, Paul WE, Finkelman FD. 1991. Interleukin-4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc. Natl. Acad. Sci. USA 88:5513–17 [Google Scholar]
  98. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA. et al. 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–22 [Google Scholar]
  99. Weiss RA, Clapham RP, Cheingsong-Popov R, Dalgleish AG, Carne CA. et al. 1985. Neutralization of human T-lymphotropic virus type III by sera by AIDS and AIDS-risk patients. Nature 316:69–72 [Google Scholar]
  100. Weiss RA, Clapham R, Weber JN, Dalgleish AG. 1986. Variable and conserved neutralization antigens of human immunodeficiency virus. Nature 324:572–75 [Google Scholar]
  101. Zach JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A. et al. 1990. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 61:213–22 [Google Scholar]
  102. Zhang Y, Nakata K, Weiden M, Rom WN. 1995. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J. Clin. Invest. 95:2324–31 [Google Scholar]
  103. Zinkernagel RM. 1996. Immunology taught by viruses. Science 271:173–78 [Google Scholar]
/content/journals/10.1146/annurev.micro.50.1.825
Loading
/content/journals/10.1146/annurev.micro.50.1.825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error