1932

Abstract

Although often considered as a group, spinal motor neurons are highly diverse in terms of their morphology, connectivity, and functional properties and differ significantly in their response to disease. Recent studies of motor neuron diversity have clarified developmental mechanisms and provided novel insights into neurodegeneration in amyotrophic lateral sclerosis (ALS). Motor neurons of different classes and subtypes—fast/slow, alpha/gamma—are grouped together into motor pools, each of which innervates a single skeletal muscle. Distinct mechanisms regulate their development. For example, glial cell line–derived neurotrophic factor (GDNF) has effects that are pool-specific on motor neuron connectivity, column-specific on axonal growth, and subtype-specific on survival. In multiple degenerative contexts including ALS, spinal muscular atrophy (SMA), and aging, fast-fatigable (FF) motor units degenerate early, whereas motor neurons innervating slow muscles and those involved in eye movement and pelvic sphincter control are strikingly preserved. Extrinsic and intrinsic mechanisms that confer resistance represent promising therapeutic targets in these currently incurable diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.051508.135722
2010-07-21
2024-04-24
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.neuro.051508.135722
Loading
/content/journals/10.1146/annurev.neuro.051508.135722
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error