1932

Abstract

Abstract

The central nervous system (CNS) is arguably one of the most complex systems in the universe. To understand the CNS, scientists have investigated a variety of molecules, including proteins, lipids, and various small molecules. However, one large class of molecules, noncoding RNAs (ncRNAs), has been relatively unexplored. ncRNAs function directly as structural, catalytic, or regulatory molecules rather than serving as templates for protein synthesis. The increasing variety of ncRNAs being identified in the CNS suggests a strong connection between the biogenesis, dynamics of action, and combinatorial regulatory potential of ncRNAs and the complexity of the CNS. In this review, we give an overview of the diversity and abundance of ncRNAs before delving into specific examples that illustrate their importance in the CNS. In particular, we cover recent evidence for the roles of microRNAs, small nucleolar RNAs, retrotransposons, the NRSE small modulatory RNA, and BC1/BC200 in the CNS. Finally, we speculate why ncRNAs are well adapted to improving organism-environment interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.29.051605.112839
2006-07-21
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.neuro.29.051605.112839
Loading
/content/journals/10.1146/annurev.neuro.29.051605.112839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error