1932

Abstract

Mammary synthesis of milk fat continues to be an active research area, with significant advances in the regulation of lipid synthesis by bioactive fatty acids (FAs). The biohydrogenation theory established that diet-induced milk fat depression (MFD) in the dairy cow is caused by an inhibition of mammary synthesis of milk fat by specific FAs produced during ruminal biohydrogenation. The first such FA shown to affect milk fat synthesis was -10, 12 conjugated linoleic acid, and its effects have been well characterized, including dose-response relationships. During MFD, lipogenic capacity and transcription of key mammary lipogenic genes are coordinately down-regulated. Results provide strong evidence for sterol response element-binding protein-1 (SREBP1) and Spot 14 as biohydrogenation intermediate responsive lipogenic signaling pathway for ruminants and rodents. The study of MFD and its regulation by specific rumen-derived bioactive FAs represents a successful example of nutrigenomics in present-day animal nutrition research and offers several potential applications in animal agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.nutr.012809.104648
2011-08-21
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.nutr.012809.104648
Loading
/content/journals/10.1146/annurev.nutr.012809.104648
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error