1932

Abstract

The suggestion from nutritional studies with mammals of a link between iron and copper metabolism has been reinforced by recent investigations with yeast cells. Iron must be in the reduced ferrous (FeII) state for uptake by yeast cells, and reoxidation to ferric (FeIII) by a copper oxidase is part of the transport process. Thus, yeast cells deficient in copper are unable to absorb iron. In an analogous way, animals deficient in copper appear to be unable to move FeII out of cells, probably because it cannot be oxidized to FeIII. Invertebrate animals use copper and iron in ways very similar to vertebrates, with some notable exceptions. In the cases where vertebrates and invertebrates are similar, the latter may be useful models for vertebrate metabolism. In cases where they differ (e.g. predominance of serum ferritin in insects, oxygen transport by a copper protein in many arthropods, central importance of phenoloxidase, a copper enzyme in arthropods), the differences may represent processes that are exaggerated in invertebrates and thus more amenable to study in these organisms. On the other hand, they may represent processes unique to invertebrates, thus providing novel information on species diversity.

Keyword(s): invertebrateyeast
Loading

Article metrics loading...

/content/journals/10.1146/annurev.nutr.17.1.501
1997-07-01
2024-04-26
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.nutr.17.1.501
Loading
/content/journals/10.1146/annurev.nutr.17.1.501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error