1932

Abstract

Abstract

This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by () resolving individual molecular eigenstates above a dissociation threshold, () locating vibrational levels at the transition state, () observing quantum resonances in the barrier region for motion along a reaction coordinate, and () studying energy release to fragments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.58.032806.104610
2007-05-05
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pc/58/1/annurev.physchem.58.032806.104610.html?itemId=/content/journals/10.1146/annurev.physchem.58.032806.104610&mimeType=html&fmt=ahah

Literature Cited

  1. Herschbach DR, Kwei GH, Norris JA. 1961. Reactive scattering in crossed molecular beams: K atoms with CH3I and C2H5I. J. Chem. Phys. 34:1842–43 [Google Scholar]
  2. Moore CB. 1963. Spectroscopic studies of ketene and diazomethane. PhD thesis. Univ. Calif.: Berkeley.258pp.
  3. Moore CB. 1963. Vibration-rotation spectrum of the perpendicular bending modes of CH2N2. J. Chem. Phys. 39:1884–89 [Google Scholar]
  4. Moore CB, Pimentel GC. 1964. Infrared spectra of gaseous diazomethane. J. Chem. Phys. 40:329–41 [Google Scholar]
  5. Moore CB, Pimentel GC. 1964. Solid infrared spectra, assignment and vibrational potential function of diazomethane. J. Chem. Phys. 40:342–55 [Google Scholar]
  6. Moore CB, Pimentel GC. 1964. Matrix reaction of methylene with nitrogen to form diazomethane. J. Chem. Phys. 41:3504–9 [Google Scholar]
  7. Moore CB, Pimentel GC, Goldfarb TD. 1965. Matrix photolysis products of diazomethane: methyleneimine and hydrogen cyanide. J. Chem. Phys. 43:63–70 [Google Scholar]
  8. Moore CB, Pimentel GC. 1963. Infrared spectrum and vibrational potential function of ketene and the deuterated ketenes. J. Phys. Chem. 38:2816–29 [Google Scholar]
  9. Moore CB, Pimentel GC. 1964. Out-of-plane CH2 bending potential functions of diazomethane, ketene, and related molecules. J. Chem. Phys. 40:1529–34 [Google Scholar]
  10. Petek H, Nesbitt DJ, Ogilby PR, Moore CB. 1983. Infrared flash kinetic spectroscopy: the v1 and v3 spectra of singlet methylene. J. Phys. Chem. 87:5367–71 [Google Scholar]
  11. Cottrell TL, Matheson AJ. 1961. Measurement of the vibrational relaxation time of tetradeuteriomethane. Proc. Chem. Soc. 1961:114 [Google Scholar]
  12. Moore CB. 1965. Vibration-rotation energy transfer. J. Chem. Phys. 43:2979–86 [Google Scholar]
  13. Steinfeld JI, Klemperer W. 1965. Energy-transfer processes in monochromatically excited iodine molecules. I. Experimental results. J. Chem. Phys. 42:3475–97 [Google Scholar]
  14. Carrington T. 1959. Rotational transfer in the flourescence spectrum of OH(2Σ+). J. Chem. Phys. 31:1418–19 [Google Scholar]
  15. Broida HP, Carrington T. 1963. Rotational, vibrational, and electronic energy transfer in the flourescence of nitric oxide. J. Chem. Phys. 38:136–47 [Google Scholar]
  16. Mie K. 1934. Resonance band systems of HD molecules between 1650 and 1000 Å. Z. Phys. 91:475–92 [Google Scholar]
  17. Takezawa S, Innes FR, Tanaka Y. 1967. Selective enhancement in hydrogenlike molecules with the rare gases. II. HD and D2 with argon and krypton. J. Chem. Phys. 46:4555–61 [Google Scholar]
  18. Fink EH, Akins DL, Moore CB. 1972. Energy transfer in mono-chromatically-excited hydrogen (B 1Σu+). I. Excitation processes, electronic quenching, and vibrational energy transfer. J. Chem. Phys. 56:900–15Presents a direct observation of the distribution of energy between rotation and translation upon vibrational deactivation. [Google Scholar]
  19. Pibel CD, Carleton KL, Moore CB. 1990. Dynamics of electronic energy quenching: the reaction of H2(B)+He. J. Chem. Phys. 93:323–32 [Google Scholar]
  20. Akins DL, Fink EH, Moore CB. 1970. Rotation-translation energy transfer between individual quantum states of HD(B1Σu+). J. Chem. Phys. 52:1604–5 [Google Scholar]
  21. Pibel CD, Moore CB. 1990. Molecular angular momentum reorientation of electronically excited hydrogen (B 1Σu+). J. Chem. Phys. 93:4804–11 [Google Scholar]
  22. Yeung ES, Moore CB. 1971. Tunable UV laser excitation of formaldehyde. An application of nonlinear optics in chemistry. J. Am. Chem. Soc. 93:2059–60 [Google Scholar]
  23. Yeung ES, Moore CB. 1973. Photochemistry of single vibronic levels of formaldehyde. J. Chem. Phys. 58:3988–98 [Google Scholar]
  24. Yeung ES, Moore CB. 1974. Predissociation model for formaldehyde. J. Chem. Phys. 60:2139–47 [Google Scholar]
  25. Weisshaar JC, Bamford DJ, Specht E, Moore CB. 1981. Quenching, electronic energy transfer, and rotational relaxation of S1 formaldehyde. J. Chem. Phys. 74:226–34 [Google Scholar]
  26. Yeung ES, Moore CB. 1972. Isotopic separation by photopredissociation. Appl. Phys. Lett. 21:109–10Demonstrates the first isotopic enrichment by laser photochemistry. [Google Scholar]
  27. Letokov VS, Moore CB. 1977. Laser isotope separation. In Chemical and Biochemical Applications of Lasers, Vol. III ed. CB Moore pp. 1–165 New York: Academic [Google Scholar]
  28. Clark JH, Haas Y, Houston PL, Moore CB. 1975. Carbon isotope separation by tunable-laser predissociation of formaldehyde. Chem. Phys. Lett. 35:82–85 [Google Scholar]
  29. Hedges REM, Moore CB. 1978. Enrichment of 14C and radiocarbon dating. Nature 276:255–57 [Google Scholar]
  30. Leone SR, Moore CB. 1974. Isotopically selective photochemistry of bromine. Phys. Rev. Lett. 33:269–72 [Google Scholar]
  31. Callear AB. 1962. Vibrational relaxation of nitric oxide. Discuss. Faraday Soc. 33:28–36 [Google Scholar]
  32. Callear AB, Smith IWM. 1963. Fluorescence of nitric oxide. II. Vibrational energy transfer between NO A2Σ+(v = 3, 2, and 1) and N2 X1Σg(v = 0). Trans. Faraday Soc. 59:1735–47 [Google Scholar]
  33. Moore CB. 1969. Laser studies of vibrational energy transfer. Acc. Chem. Res. 2:103–9 [Google Scholar]
  34. Moore CB. 1971. Lasers in chemistry. Annu. Rev. Phys. Chem. 22:387–428 [Google Scholar]
  35. Leone SR, Moore CB. 1974. Laser sources. In Chemical and Biochemical Applications of Lasers ed. CB Moore pp. 1–27 New York: Academic [Google Scholar]
  36. Faust WL, McFarlane RA, Patel CKN, Garrett CGB. 1964. Noble gas optical maser lines at wavelengths between 2 and 35 μ. Phys. Rev. 133:1476–86 [Google Scholar]
  37. Moore CB. 1965. Gas-laser frequency selection by molecular absorption. Appl. Opt. 4:252–53 [Google Scholar]
  38. Yardley JT, Moore CB. 1965. Response times of Ge:Cu infrared detectors. Appl. Phys. Lett. 7:311–12 [Google Scholar]
  39. Yardley JT, Moore CB. 1966. Laser-excited vibrational fluorescence and energy transfer in methane. J. Chem. Phys. 45:1066–67 [Google Scholar]
  40. Yardley JT, Moore CB. 1968. Vibrational energy transfer in methane. J. Chem. Phys. 49:1111–25 [Google Scholar]
  41. Hess P, Moore CB. 1976. Vibrational energy transfer in methane and methane-rare-gas mixtures. J. Chem. Phys. 65:2339–44 [Google Scholar]
  42. Hess P, Kung AH, Moore CB. 1980. Vibration → vibration energy transfer in methane. J. Chem. Phys. 72:5525–31 [Google Scholar]
  43. Yardley JT, Fertig MN, Moore CB. 1970. Vibrational deactivation in methane mixtures. J. Chem. Phys. 52:1450–53 [Google Scholar]
  44. Zittel PF, Moore CB. 1973. Model for V → T, R relaxation: CH4 and CD4 mixtures. J. Chem. Phys. 58:2004–14 [Google Scholar]
  45. Hocker LO, Kovacs MA, Rhodes CK, Flynn GW, Javan A. 1966. Vibrational relaxation measurements in CO2 using an induced-fluorescence technique. Phys. Rev. Lett. 17:233–35 [Google Scholar]
  46. Moore CB, Wood RE, Hu BL, Yardley JT. 1967. Vibrational energy transfer in CO2 lasers. J. Chem. Phys. 46:4222–31 [Google Scholar]
  47. Yardley JT, Moore CB. 1967. Intramolecular vibration-to-vibration energy transfer in carbon dioxide. J. Chem. Phys. 46:4491–95 [Google Scholar]
  48. Heller DF, Moore CB. 1970. Relaxation of the asymmetric stretching vibration of CO2 by collisions with H2O, D2O, and HDO. J. Chem. Phys. 52:1005–6 [Google Scholar]
  49. Stephenson JC, Wood RE, Moore CB. 1968. Near-resonant energy transfer between infrared-active vibrations. J. Chem. Phys. 48:4790–91Discusses transition-dipole-induced vibrational transfers; the long range of interaction causes the sharp decrease in rate constant with ΔE. [Google Scholar]
  50. Mahan BH. 1967. Resonant transfer of vibrational energy in molecular collisions. J. Chem. Phys. 46:98–101 [Google Scholar]
  51. Sharma RD, Brau CA. 1967. Near-resonant vibrational energy transfer in nitrogen-carbon dioxide mixtures. Phys. Rev. Lett. 19:1273–75 [Google Scholar]
  52. Stephenson JC, Moore CB. 1972. Temperature dependence of nearly resonant vibration → vibration energy transfer in CO2 mixtures. J. Chem. Phys. 56:1295–308 [Google Scholar]
  53. Stephenson JC, Moore CB. 1970. Near-resonant vibration → vibration energy transfer: CO2(v3 = 1) + M → CO2(v1 = 1) + M* + ΔE. J. Chem. Phys. 52:2333–40 [Google Scholar]
  54. Airey JR. 1967. A new pulsed infrared chemical laser. IEEE J. Quantum Electron. 3:208 [Google Scholar]
  55. Chen HL, Stephenson JC, Moore CB. 1968. Laser-excited vibrational fluorescence of HCl and HCl-CO2 laser. Chem. Phys. Lett. 2:593–96 [Google Scholar]
  56. Zittel PF, Moore CB. 1972. Vibration-to-vibration energy transfer in N2-CO. Appl. Phys. Lett. 21:81–83 [Google Scholar]
  57. Moore CB, Zittel PF. 1973. State-selected kinetics from laser-excited fluorescence. Science 182:541–46 [Google Scholar]
  58. Steele RV, Moore CB. 1974. V → T, R energy transfer in HCl- and DCl-rare gas mixtures. J. Chem. Phys. 60:2794–99 [Google Scholar]
  59. Chen HL, Moore CB. 1971. Vibration → rotation energy transfer in hydrogen chloride. J. Chem. Phys. 54:4072–80 [Google Scholar]
  60. Zittel PF, Moore CB. 1973. V → T, R and V → V relaxation in DCl systems. J. Chem. Phys. 58:2922–28 [Google Scholar]
  61. Zittel PF, Moore CB. 1973. Vibrational relaxation in HBr and HCl from 144°K to 584°K. J. Chem. Phys. 59:6636–40 [Google Scholar]
  62. Chen HL, Moore CB. 1971. Vibration → vibration energy transfer in hydrogen chloride mixtures. J. Chem. Phys. 54:4080–84 [Google Scholar]
  63. Craig NC, Moore CB. 1971. Vibrational relaxation of hydrogen chloride by chlorine atoms and chlorine molecules. J. Phys. Chem. 75:1622–23 [Google Scholar]
  64. Macdonald RG, Moore CB. 1976. Vibrational relaxation of DCl (v = 1) by Cl and Br atoms and of HBr (v = 1) by Br atoms. J. Chem. Phys. 65:5198–200 [Google Scholar]
  65. Macdonald RG, Moore CB, Smith IWM, Wodarczyk FJ. 1975. Vibrational relaxation of HCl(v = 1) by Cl atoms. J. Chem. Phys. 62:2934–38 [Google Scholar]
  66. Wodarczyk FJ, Moore CB. 1974. Laser-initiated chemical reactions: total absolute reaction rate constants for Cl + HBr and Cl + HI. Chem. Phys. Lett. 26:484–88 [Google Scholar]
  67. Leone SR, Macdonald RG, Moore CB. 1975. Vibrational relaxation and photochemistry of HCl(v = 1, 2) and Br atoms. J. Chem. Phys. 63:4735–41 [Google Scholar]
  68. Macdonald RG, Moore CB. 1978. Reaction and deactivation of HCl (v = 1, 2) by O atoms. J. Chem. Phys. 68:513–21 [Google Scholar]
  69. Moore CB, Smith IWM. 1979. Chemical reactions of vibrationally excited molecules. Faraday Discuss. Chem. Soc. 67:146–61 [Google Scholar]
  70. Langford AO, Moore CB. 1984. Reaction and relaxation of vibrationally excited formyl radicals. J. Chem. Phys. 80:4204–10 [Google Scholar]
  71. Leone SR, Moore CB. 1973. V → V energy transfer in HCl with tunable optical parametric oscillator excitation. Chem. Phys. Lett. 19:340–44 [Google Scholar]
  72. Dasch CJ, Moore CB. 1980. Experimental V → V energy transfer from directly excited CO(v = 2) and DCl(v = 2). J. Chem. Phys. 72:5219–22 [Google Scholar]
  73. Dasch CJ, Moore CB. 1980. Single quantum vibrational energy transfer from HCl (v = 2) and HBr(v = 2). J. Chem. Phys. 72:4117–22 [Google Scholar]
  74. Finzi J, Hovis FE, Panfilov VN, Hess P, Moore CB. 1977. Vibrational relaxation of water vapor. J. Chem. Phys. 67:4053–61 [Google Scholar]
  75. Hovis FE, Moore CB. 1980. Temperature dependence of vibrational energy transfer in NH3 and H218O. J. Chem. Phys. 72:2397–402 [Google Scholar]
  76. Miljanic SS, Specht E, Moore CB. 1982. Vibrational relaxation of the bending modes of D2O, D2S, and H2Se gas mixtures. J. Chem. Phys. 77:4949–54 [Google Scholar]
  77. Finzi J, Moore CB. 1975. Relaxation of CO2(1001), CO2(0201), and N2O(1001) vibrational levels by near-resonant V → V energy transfer. J. Chem. Phys. 63:2285–88 [Google Scholar]
  78. Douglas DJ, Moore CB. 1979. Vibrational relaxation HF (v = 3,4) by H2, D2, and CO2. J. Chem. Phys. 70:1769–73 [Google Scholar]
  79. Moore CB. 1973. Vibration → vibration energy transfer. Adv. Chem. Phys. 23:41–83 [Google Scholar]
  80. Flynn GW. 1981. Collision-induced energy flow between vibrational modes of small polyatomic molecules. Acc. Chem. Res. 14:334–41 [Google Scholar]
  81. Yardley JT. 1980. Introduction to Molecular Energy Transfer. New York: Academic.308pp.
  82. Kutepov AA, Hummer DG, Moore CB. 1985. Rotational relaxation of the 0001 level of CO2 including radiative transfer in the 4.3-μm band of planetary atmospheres. J. Quant. Spectrosc. Radiat. Transf. 34:101–14 [Google Scholar]
  83. Leone SR, Wodarczyk FJ. 1974. Laser-excited electronic-to-vibrational energy transfer from Br(42P1/2) to HCl and HBr. J. Chem. Phys. 60:314–15 [Google Scholar]
  84. Wiesenfeld JM, Moore CB. 1979. Vibrational relaxation of matrix-isolated HCl and DCl. J. Chem. Phys. 70:930–46 [Google Scholar]
  85. Young L, Moore CB. 1982. Vibrational relaxation of CH3F in inert gas matrices. J. Chem. Phys. 76:5869–77 [Google Scholar]
  86. Young L, Moore CB. 1984. Vibrational relaxation of HCl (v = 1, 2, 3) in Ar, Kr, and Xe matrices. J. Chem. Phys. 81:3137–47 [Google Scholar]
  87. Abbate AD, Moore CB. 1985. Intramolecular vibrational relaxation of a polyatomic in the solid state: II. HC14N and HC15N in Ar, Kr, and Xe. J. Chem. Phys. 83:975–92 [Google Scholar]
  88. Mei CC, Moore CB. 1977. Temperature dependence of the total reaction rates for Cl + HI and Cl + HBr. J. Chem. Phys. 67:3936–39 [Google Scholar]
  89. Mei CC, Moore CB. 1979. Thermal rate constants, energy dependence, and isotope effect for halogen-hydrogen halide reactions. J. Chem. Phys. 70:1759–64 [Google Scholar]
  90. Macdonald RG, Moore CB. 1980. Reaction and deactivation of HCl(v = 1,2) by Cl, Br, and H atoms. J. Chem. Phys. 73:1681–89 [Google Scholar]
  91. Bergmann K, Leone SR, Macdonald RG, Moore CB. 1975. Vibrational photochemistry. Isr. J. Chem. 14:105–10 [Google Scholar]
  92. Bergmann K, Leone SR, Moore CB. 1975. Effect of reagent electronic excitation on the chemical reaction Br(2P1/2,3/2) + HI. J. Chem. Phys. 63:4161–66 [Google Scholar]
  93. Bergmann K, Moore CB. 1975. Energy dependence and isotope effect for the total reaction rate of Cl + HI and Cl + HBr. J. Chem. Phys. 63:643–49 [Google Scholar]
  94. Langford AO, Moore CB. 1984. Collision complex formation in the reactions of formyl radicals with nitric oxide and oxygen. J. Chem. Phys. 80:4211–21 [Google Scholar]
  95. Guo Y, Smith SC, Moore CB, Melius CF. 1995. Kinetics and product branching ratios for the reaction of HCO + NO2. J. Phys. Chem. 99:7473–79 [Google Scholar]
  96. Green WH, Moore CB, Polik WF. 1992. Transition states and rate constants for unimolecular reactions. Annu. Rev. Phys. Chem. 43:591–626 [Google Scholar]
  97. Moore CB. 1995. Spiers memorial lecture. State-resolved studies of unimolecular reactions. Faraday Discuss. 102:1–15 [Google Scholar]
  98. Moore CB, Weisshaar JC. 1983. Formaldehyde photochemistry. Annu. Rev. Phys. Chem. 34:525–55 [Google Scholar]
  99. Hildebrand JH. 1981. A history of solution theory. Annu. Rev. Phys. Chem. 32:1–23 [Google Scholar]
  100. Clouthier DJ, Ramsey DA. 1983. The spectroscopy of formaldehyde and thioformaldehyde. Annu. Rev. Phys. Chem. 34:31–58 [Google Scholar]
  101. Weisshaar JC, Moore CB. 1979. Collisionless nonradiative decay rates of single rotational levels of S1 formaldehyde. J. Chem. Phys. 70:5135–46 [Google Scholar]
  102. Weisshaar JC, Moore CB. 1980. Isotope, electric field, and vibrational state dependence of single rotational level lifetimes of S1 formaldehyde. J. Chem. Phys. 72:5415–25 [Google Scholar]
  103. Polik WF, Guyer DR, Moore CB. 1990. Stark level-crossing spectroscopy of S0 formaldehyde eigenstates at the dissociation threshold. J. Chem. Phys. 92:3453–70 [Google Scholar]
  104. Polik WF, Moore CB, Miller WH. 1988. Quantum interference among competing unimolecular decay channels: asymmetric S0 D2CO decay profiles. J. Chem. Phys. 89:3584–91 [Google Scholar]
  105. Miller WH, Hernandez R, Moore CB, Polik WF. 1990. A transition state theory-based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde. J. Chem. Phys. 93:5657–66 [Google Scholar]
  106. Polik WF, Guyer DR, Miller WH, Moore CB. 1990. Eigenstate-resolved unimolecular reaction dynamics: ergodic character of S0 formaldehyde at the dissociation threshold. J. Chem. Phys. 92:3471–84The statistical fluctuations of observed rate constants for individual vibrational levels near reaction thresholds prove that vibrations are strongly mixed. [Google Scholar]
  107. Scuseria GE, Schaefer HF III. 1989. The photodissociation of formaldehyde: a coupled-cluster study including connected triple excitations of the transition state barrier height for formaldehyde → hydrogen + carbon monoxide. J. Chem. Phys. 90:3629–36 [Google Scholar]
  108. Bamford DJ, Filseth SV, Foltz MF, Hepburn JW, Moore CB. 1985. Photofragmentation dynamics of formaldehyde: CO(v, J) distributions as a function of initial rovibronic state and isotopic substitution. J. Chem. Phys. 82:3032–41 [Google Scholar]
  109. Debarre D, Lefebvre M, Pealat M, Taran JPE, Bamford DJ, Moore CB. 1985. Photofragmentation dynamics of formaldehyde: H2(v, J) distributions. J. Chem. Phys. 83:4476–87 [Google Scholar]
  110. Butenhoff TJ, Carleton KL, Moore CB. 1990. Photodissociation dynamics of formaldehyde: H2 rotational distributions and product quantum state correlations. J. Chem. Phys. 92:377–93 [Google Scholar]
  111. Carleton KL, Butenhoff TJ, Moore CB. 1990. Photodissociation dynamics of formaldehyde: H2 (v,J) vector correlations. J. Chem. Phys. 93:3907–18 [Google Scholar]
  112. Schramm B, Bamford DJ, Moore CB. 1983. Nuclear spin state conservation in photodissociation of formaldehyde. Chem. Phys. Lett. 98:305–9 [Google Scholar]
  113. Ho P, Bamford DJ, Buss RJ, Lee YT, Moore CB. 1982. Photodissociation of formaldehyde in a molecular beam. J. Chem. Phys. 76:3630–36 [Google Scholar]
  114. Schinke R. 1993. Photodissociation Dynamics. Cambridge, UK: Cambridge Univ. Press.417pp.
  115. Schinke R. 1986. Rotational state distribution of molecular hydrogen and carbon monoxide following the photofragmentation of formaldehyde. J. Chem. Phys. 84:1487–91 [Google Scholar]
  116. Van Zee RD, Pibel CD, Butenhoff TJ, Moore CB. 1992. The impact of vibrationally excited levels of the transition state on CO(v = 0,J) distributions resulting from dissociation of H2CO. J. Chem. Phys. 97:3235–44The TS wavefunction gives the initial conditions for the dynamics of energy release as fragments repel in the exit channel. [Google Scholar]
  117. Chuang MC, Foltz MF, Moore CB. 1987. T1 barrier height, S1-T1 intersystem crossing rate, and S0 radical dissociation threshold for H2CO, D2CO, and HDCO. J. Chem. Phys. 87:3855–64 [Google Scholar]
  118. Moortgat GK, Seiler W, Warneck P. 1983. Photodissociation of formaldehyde in air: carbon monoxide and diatomic hydrogen quantum yields at 220 and 300 K. J. Chem. Phys. 78:1185–90 [Google Scholar]
  119. Clark JH, Moore CB, Nogar NS. 1978. The photochemistry of formaldehyde: absolute quantum yields, radical reactions, and NO reactions. J. Chem. Phys. 68:1264–71 [Google Scholar]
  120. Van Zee RD, Foltz MF, Moore CB. 1993. Evidence for a second molecular channel in the fragmentation of formaldehyde. J. Chem. Phys. 99:1664–73 [Google Scholar]
  121. Harding LB, Wagner AF. 1986. The reaction of atomic hydrogen with the formyl radical. In 21st Symp. Int. Combust. pp. 721–28 Pittsburgh: Combust. Inst. [Google Scholar]
  122. Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG. et al. 2004. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–61 [Google Scholar]
  123. Goddard JD, Schaefer HF III. 1990. Formyl fluoride photodissociation: potential energy surface features of singlet HFCO. J. Chem. Phys. 93:4907–15 [Google Scholar]
  124. Crane JC, Nam H, Beal HP, Clauberg H, Choi YS. et al. 1997. Vibrational assignment of the S1 fluorescence excitation spectrum of formyl fluoride. J. Mol. Spectrosc. 181:56–66 [Google Scholar]
  125. Hose G, Taylor HS. 1984. Mode localization in highly excited vibrational states: fundamentals of structure in overtone and multiphoton spectra. Chem. Phys. 84:375–92 [Google Scholar]
  126. Choi YS, Moore CB. 1989. Evidence for mode specific dynamics in the stimulated emission pumping spectra of HFCO. J. Chem. Phys. 90:3875–76 [Google Scholar]
  127. Choi YS, Moore CB. 1991. Quasistable extreme motion vibrational states of HFCO above its dissociation threshold. J. Chem. Phys. 94:5414–25 [Google Scholar]
  128. Choi YS, Moore CB. 1992. State-specific unimolecular reaction dynamics of HFCO. I. Dissociation rates. J. Chem. Phys. 97:1010–21Dissociation rates increase strongly with rotational quantum number, indicating non-RRKM dynamics and the importance of Coriolis coupling in IVR. [Google Scholar]
  129. Hahn KE, Horsman KM, Polik WF. 2001. Characterization of ν3 vibrational levels in S0 formyl fluoride using dispersed fluorescence spectroscopy. J. Mol. Spectrosc. 210:98–109 [Google Scholar]
  130. Choi YS, Moore CB. 1995. State-specific unimolecular dissociation dynamics of HFCO. II. CO rotational distribution and Doppler widths. J. Chem. Phys. 103:9981–88 [Google Scholar]
  131. Crane JC, Kawai A, Nam H, Clauberg H, Beal HP. et al. 1997. Vibrational assignment and anharmonic resonance analysis of the dispersed fluorescence and stimulated emission pumping spectra of DFCO (S0) up to 9000 cm−1. J. Mol. Spectrosc. 183:273–84 [Google Scholar]
  132. Crane JC, Nam H, Clauberg H, Beal HP, Kalinovski IJ. et al. 1998. Stimulated emission pumping spectra and intramolecular vibrational dynamics of DFCO(S0) from 9000 to 20,000 cm−1. J Phys. Chem. A 102:9433–44 [Google Scholar]
  133. Mellinger A, Ashikhmin MV, Moore CB. 1998. Experimental evidence for K-conservation in the dissociation of singlet ketene. J. Chem. Phys. 108:8944–49 [Google Scholar]
  134. Lovejoy ER, Moore CB. 1993. Structures in the energy dependence of the rate constant for ketene isomerization. J. Chem. Phys. 98:7846–54Demonstrates quantized motion along the reaction coordinate; the isomerization rate peaks at the transmission resonances of a well at the TS. [Google Scholar]
  135. Bitto H, Guyer DR, Polik WF, Moore CB. 1986. Dissociation on ground state potential energy surfaces. Faraday Discuss. Chem. Soc. 82:149–61 [Google Scholar]
  136. Chen IC, Green WH, Moore CB. 1988. Bond breaking without barriers: photofragmentation of ketene at the singlet threshold. J. Chem. Phys. 89:314–28 [Google Scholar]
  137. Green WH, Chen IC, Moore CB. 1988. Understanding unimolecular dissociations with loose transition states: photofragmentation dynamics of ketene at the singlet threshold. Ber. Bunsen-Ges. Phys. Chem. 92:389–96 [Google Scholar]
  138. Klippenstein SJ, East ALL, Allen WD. 1996. A high level ab initio map and direct statistical treatment of the fragmentation of singlet ketene. J. Chem. Phys. 105:118–40 [Google Scholar]
  139. Wade EA, Mellinger A, Hall MA, Moore CB. 1997. How a transition state tightens: the singlet photodissociation of ketene as a test case. J. Phys. Chem A 101:6568–76TS theory with ab initio parameters quantitatively predicts measured rates of dissociation at a loose transition state from 10 to 104 K. [Google Scholar]
  140. Potter ED, Gruebele M, Khundkar LR, Zewail AH. 1989. Picosecond dissociation of ketene: experimental state-to-state rates and tests of statistical theories. Chem. Phys. Lett. 164:463–70 [Google Scholar]
  141. Chen IC, Moore CB. 1990. Photofragmentation of ketene to CH2(X 3B1) + CO. I. Barrier height and dissocation rate constant. J. Phys. Chem. 94:263–69 [Google Scholar]
  142. Chen IC, Moore CB. 1990. Photofragmentation of ketene to CH2(X 3B1) + CO. II. Rotational state distributions of product CO. J. Phys. Chem. 94:269–74 [Google Scholar]
  143. Lovejoy ER, Kim SK, Moore CB. 1992. Observation of transition state vibrational thresholds in the rate of dissociation of ketene. Science 256:1541–44Stepwise increase in dissociation rate at each TS vibrational energy-level threshold confirms the statistical TS theory in detail (see also Reference 144). [Google Scholar]
  144. Kim SK, Lovejoy ER, Moore CB. 1995. Transition state vibrational level thresholds for the dissociation of triplet ketene. J. Chem. Phys. 102:3202–19 [Google Scholar]
  145. Ni CK, Wade EA, Ashikhmin MV, Moore CB. 1996. Infrared spectroscopy of ketene by two-step photodissociation. J. Mol. Spectrosc. 177:285–93 [Google Scholar]
  146. Lovejoy ER, Kim SK, Alvarez RA, Moore CB. 1991. Kinetics of intramolecular carbon atom exchange in ketene. J. Chem. Phys. 95:4081–93 [Google Scholar]
  147. Scott AP, Nobes RH, Schaefer HF III, Radom L. 1994. The Wolff rearrangement: the relevant portion of the oxirene-ketene potential energy hypersurface. J. Am. Chem. Soc. 116:10159–64 [Google Scholar]
  148. Gezelter JD, Miller WH. 1995. Resonant features in the energy dependence of the rate of ketene isomerization. J. Chem. Phys. 103:7868–76 [Google Scholar]
  149. Alvarez RA, Moore CB. 1994. Quantum yield for production of CH3NC in the photolysis of CH3NCS. Science 263:205–7 [Google Scholar]
  150. Schulz PA, Sudbo AS, Krajnovich DJ, Kwok HS, Shen YR, Lee YT. 1979. Multiphoton dissociation of polyatomic molecules. Annu. Rev. Phys. Chem. 30:379–409 [Google Scholar]
  151. Dai HL, Kung AH, Moore CB. 1979. Resonant multiphoton dissociation and mechanism of excitation for ethyl chloride. Phys. Rev. Lett. 43:761–64 [Google Scholar]
  152. Jasinski JM, Frisoli JK, Moore CB. 1983. A [1,5] sigmatropic hydrogen shift induced by high vibrational overtone excitation: the isomerization of 2-methylcyclopentadiene. J. Phys. Chem. 87:2209–13 [Google Scholar]
  153. Jasinski JM, Frisoli JK, Moore CB. 1983. Unimolecular reactions induced by vibrational overtone photochemistry. Faraday Discuss. Chem. Soc. 75:289–99 [Google Scholar]
  154. Natzle WC, Moore CB, Goodall DM, Frisch W, Holzwarth JF. 1981. Dissociative ionization of water induced by single-photon vibrational excitation. J. Phys. Chem. 85:2882–84 [Google Scholar]
  155. Butenhoff TJ, Moore CB. 1988. Hydrogen atom tunneling in the thermal tautomerism of porphine imbedded in a n-hexane matrix. J. Am. Chem. Soc. 110:8336–41 [Google Scholar]
  156. Butenhoff TJ, Chuck RS, Limbach HH, Moore CB. 1990. Vibrational photochemistry of porphine imbedded in an n-hexane-d14 Shpol’skii matrix. J. Phys. Chem. 94:7847–51 [Google Scholar]
  157. Windhorn L, Yeston JS, Witte T, Fuss W, Motzkus M. et al. 2003. Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a substatistical time scale. J. Chem. Phys. 119:641–45Femtosecond IR-multiphoton excitation energizes the reaction coordinate, causes dissociation before IVR is complete, and points to bond-selective chemistry. [Google Scholar]
  158. Pushkarsky MB, Mann AM, Yeston JS, Moore CB. 2001. Electronic spectroscopy of jet-cooled vinyl radical. J. Chem. Phys. 115:10738–44 [Google Scholar]
  159. Mann AM, Chen X, Lozovsky VA, Moore CB. 2003. Dissociation dynamics of the A2A″ state of vinyl radical. J. Chem. Phys. 118:4452–55 [Google Scholar]
  160. Kalinovski IJ. 2001. Laser induced flourescence spectroscopy of CHD2O and CH2DO and high resolution infrared spectroscopy of CH3O and HFCO. PhD thesis. Univ. Calif. Berkeley:383pp.
  161. Houston PL, Leone SR. 2000. Biography of Professor C. Bradley Moore. J. Phys. Chem. 104:10059–69 [Google Scholar]
  162. Green WH, Lawrance WD, Moore CB. 1987. Kinetic anharmonic coupling in the trihalomethanes: a mechanism for rapid intramolecular redistribution of CH stretch vibrational energy. J. Chem. Phys. 86:6000–11 [Google Scholar]
  163. Green WH, Chen IC, Bitto H, Guyer DR, Moore CB. 1989. New vibrational bands of CH2 (b 1B1). J. Mol. Spectrosc. 138:614–29 [Google Scholar]
  164. Green WH, Mahoney AJ, Zheng QK, Moore CB. 1991. Bond-breaking without barriers. II. Vibrationally excited products. J. Chem. Phys. 94:1961–69 [Google Scholar]
  165. Singer AB, Taylor JW, Barton PI, Green WH. 2006. Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110:971–76 [Google Scholar]
  166. Green WH Jr.. 2006. Predictive kinetics: a new approach for the 21st century. Adv. Chem. Eng. In press
/content/journals/10.1146/annurev.physchem.58.032806.104610
Loading
/content/journals/10.1146/annurev.physchem.58.032806.104610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error