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Abstract
We review current understanding of star formation, outlining an
overall theoretical framework and the observations that motivate it.
A conception of star formation has emerged in which turbulence
plays a dual role, both creating overdensities to initiate gravita-
tional contraction or collapse, and countering the effects of gravity
in these overdense regions. The key dynamical processes involved
in star formation—turbulence, magnetic fields, and self-gravity—
are highly nonlinear and multidimensional. Physical arguments are
used to identify and explain the features and scalings involved in
star formation, and results from numerical simulations are used to
quantify these effects. We divide star formation into large-scale and
small-scale regimes and review each in turn. Large scales range from
galaxies to giant molecular clouds (GMCs) and their substructures.
Important problems include how GMCs form and evolve, what de-
termines the star formation rate (SFR), and what determines the
initial mass function (IMF). Small scales range from dense cores to
the protostellar systems they beget. We discuss formation of both
low- and high-mass stars, including ongoing accretion. The devel-
opment of winds and outflows is increasingly well understood, as are
the mechanisms governing angular momentum transport in disks.
Although outstanding questions remain, the framework is now in
place to build a comprehensive theory of star formation that will be
tested by the next generation of telescopes.
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1. INTRODUCTION

Stars are the “atoms” of the universe, and the problem of how stars form is at the nexus
of much of contemporary astrophysics. By transforming gas into stars, star formation
determines the structure and evolution of galaxies. By tapping the nuclear energy in
the gas left over from the Big Bang, it determines the luminosity of galaxies and, quite
possibly, leads to the reionization of the Universe. Most of the elements—including
those that make up the world around us—are formed in stars. Finally, the process
of star formation is inextricably tied up with the formation and early evolution of
planetary systems.

The problem of star formation can be divided into two broad categories: mi-
crophysics and macrophysics. The microphysics of star formation deals with how
individual stars (or binaries) form. Do stars of all masses acquire most of their mass
via gravitational collapse of a single dense core? How are the properties of a star
or binary determined by the properties of the medium from which it forms? How
does the gas that goes into a protostar lose its magnetic flux and angular momentum?
How do massive stars form in the face of intense radiation pressure? What are the
properties of the protostellar disks, jets, and outflows associated with young stellar
objects (YSOs), and what governs their dynamical evolution?

The macrophysics of star formation deals with the formation of systems of stars,
ranging from clusters to galaxies. How are giant molecular clouds (GMCs), the loci of
most star formation, themselves formed out of diffuse interstellar gas? What processes
determine the distribution of physical conditions within star-forming regions, and
why does star formation occur in only a small fraction of the available gas? How is
the rate at which stars form determined by the properties of the natal GMC or, on a
larger scale, of the interstellar medium (ISM) in a galaxy? What determines the mass
distribution of forming stars: Is it the initial mass function (IMF)? Most stars form in
clusters (Lada & Lada 2003); how do stars form in such a dense environment and in
the presence of enormous radiative and mechanical feedback from other YSOs?

Many of these questions, particularly those related to the microphysics of star
formation, were discussed in the classic review by Shu, Adams & Lizano (1987). Much
has changed since then. Observers have made enormous strides in characterizing star
formation on all scales and in determining the properties of the medium from which
stars form. Aided by powerful computers, theorists have been able to numerically
model the complex physical and chemical processes associated with star formation in
three dimensions. Perhaps most important, a new paradigm has emerged, in which
large-scale, supersonic turbulence governs the macrophysics of star formation.

This review focuses on the advances made in star formation since 1987, with an
emphasis on the role of turbulence. Recent relevant reviews include those on the
physics of star formation (Larson 2003), and on the role of supersonic turbulence in
star formation (Mac Low & Klessen 2004, Ballesteros-Paredes et al. 2007). The re-
view by Zinnecker & Yorke (2007, in this volume) provides a different perspective on
high-mass star formation, while that by Bergin & Tafalla (2007, in this volume) gives
a more detailed description of dense cores just prior to star formation. Because the
topic is vast, we must necessarily exclude a number of relevant topics from this review:
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primordial star formation (see Bromm & Larson 2004), planet formation, astrochem-
istry, the detailed physics of disks and outflows, radiative transfer, and the properties
of YSOs.

In Section 2, we begin with an overview of basic physical processes and scales
involved in star formation, covering turbulence (Section 2.1), self gravity (2.2), and
magnetic fields (2.3). In Section 3, we review the macrophysics of star formation,
focusing on the physical state of GMCs, clumps, and cores (3.1); the formation,
evolution, and destruction of GMCs (3.2); core mass functions and the IMF (3.3);
and the large-scale rate of star formation (3.4). Section 4 reviews the microphysics
of star formation, covering low-mass star formation (4.1), disks and winds (4.2), and
high-mass star formation (4.3). We conclude in Section 5 with an overview of the
star-formation process.

2. BASIC PHYSICAL PROCESSES

2.1. Turbulence

As emphasized in Section 1, many of the advances in the theory of star formation
since the review by Shu, Adams & Lizano (1987) have been based on realistic evalua-
tion and incorporation of the effects of turbulence. Turbulence is in fact important in
essentially all branches of astrophysics that involve gas dynamics, and many commu-
nities have contributed to the recent progress in understanding and characterizing
turbulence in varying regimes. [Chandrasekhar (1949) presaged this development, in
choosing the then-new theory of turbulence as the topic of his Henry Norris Russell
prize lecture.] Here, we concentrate on the parameter regimes of turbulence appli-
cable within the cold interstellar medium and the physical properties of these flows
that appear particularly influential for controlling star formation.

Our discussion provides an overview only; pointers are given to excellent recent
reviews that summarize the large and growing literature on this subject. General refer-
ences include Frisch (1995), Biskamp (2003), and Falgarone & Passot (2003). A much
more extensive literature survey and discussion of interstellar turbulence, including
both diffuse-ISM and dense-ISM regimes, is presented by Elmegreen & Scalo (2004)
and Scalo & Elmegreen (2004). A recent review focusing on the detailed physics of
turbulent cascades in magnetized plasmas is Schekochihin & Cowley (2005).

2.1.1. Spatial correlations of velocity and magnetic fields. Turbulence is defined
by the Oxford English Dictionary as a state of “violent commotion, agitation, or
disturbance,” with a turbulent fluid further defined as one “in which the velocity at
any point fluctuates irregularly.” Although turbulence is, by definition, an irregular
state of motion, a central concept is that order nevertheless persists as scale-dependent
spatial correlations among the flow variables. These correlations can be measured in
many ways; common mathematical descriptions include autocorrelation functions,
structure functions, and power spectra.

One of the most fundamental quantities, which is also one of the most intuitive to
understand, is the root mean square (RMS) velocity difference between two points
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separated by a distance r. With the velocity structure function of order p defined
as Sp (r) ≡ 〈|v(x) − v(x + r)|p 〉, this quantity is given as �v(r) ≡ [S2(r)]1/2. The
autocorrelation function of the velocity is related to the structure function: A(r) ≡
〈v(x) · v(x + r)〉 = 〈|v|2〉 − S2(r)/2; note that the autocorrelation with zero lag is
A(0) = 〈|v|2〉, as S2(0) = 0. The power spectrum of velocity, P (k) ≡ |v(k)|2, is
the Fourier transform of the autocorrelation function. For zero mean velocity, the
velocity dispersion averaged over a volume �3, σv(�)2, is equal to the power spectrum
integrated with kmin = 2π/�. If turbulence is isotropic and the system in which it
is observed is spatially symmetric with each dimension ≈�, then the 1D velocity
dispersion along a given line of sight (a direct observable) will be related to the
3D velocity dispersion by σ = σv(�)/

√
3. Analogous structure functions, correlation

functions, and power spectra can also be defined for the magnetic field, as well as other
fluid variables, including the density (see Section 2.1.4). Delta-variance techniques
provide similar information, and are particularly useful for reducing edge effects when
making comparisons with observational data (Bensch, Stutzki & Ossenkopf 2001).

For isotropic turbulence, Sp and Aare functions only of r = |r|, and P is a function
only of k = |k|. The Fourier amplitude |v(k)| is then (on average) only a function
of � = 2π/k, and can be denoted by v(�); to emphasize that these velocities are
perturbations about a background state, the amplitude of a given Fourier component
is often written as δv(k) or δv(�). When there is a large dynamic range between the
scales associated with relevant physical parameters (see Section 2.1.3), correlations
often take on power-law forms. If P (k) ∝ k−n for an isotropic flow, then

v(�) ∝ σv(�) ∝ �v(�) ∝ �q , (1)

with q = (n − 3)/2. Sometimes indices n′ of 1D (angle-averaged), rather than 3D,
power spectra are reported; these are related by n′ = n − 2.

The turbulent scaling relations reflect the basic physics governing the flow. The
classical theory of Kolmogorov (1941) applies to incompressible flow, i.e., when the
velocities are negligible compared to the thermal speed σth = (Pth/ρ)1/2 (where
ρ is the density and Pth is the thermal pressure); σth is equal to the sound speed
c s = (γ Pth/ρ)1/2 in an isothermal (γ = 1) gas. In incompressible flows, energy is dis-
sipated and turbulent motions are damped only for scales smaller than the Reynolds
scale �ν at which the viscous terms in the hydrodynamic equations, ∼νv(�)/�2, exceed
the nonlinear coupling terms between scales, ∼v(�)2/�; here ν is the kinematic vis-
cosity. At scales large compared to �ν , and small compared to the system as a whole,
the rate of specific energy transfer Ė between scales is assumed to be conserved,
and equal to the dissipation rate at the Reynolds scale. From dimensional analysis,
Ė ∼ v(�)3/�, which implies n = 11/3 and q = 1/3 for the so-called inertial range
in Kolmogorov turbulence. The Kolmogorov theory includes the exact result that
S3(�) = −( 4

5 )Ė�.
Because velocities v(�) ∼ σv(�) ∼ �v(�) in molecular clouds are in general

not small compared to c s , at least for sufficently large �, one cannot expect the
Kolmogorov theory to apply. In particular, some portion of the energy at a given
scale must be directly dissipated via shocks, rather than cascading conservatively
through intermediate scales until �ν is reached. In the limit of zero pressure, the system
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would consist of a network of (overlapping) shocks; this state is often referred to as
Burgers turbulence (Frisch & Bec 2001). Because the power spectrum corresponding
to a velocity discontinuity in one dimension has P (k) ∝ k−2, an isotropic system of
shocks in three dimensions would also yield power-law scalings for the velocity cor-
relations, with n = 4 and q = 1/2. Note that correlations can take on a power-law
form even if there is not a conservative inertial cascade; a large range of spatial scales
with consistent physics is still required.

Turbulence in a magnetized system must differ from the unmagnetized case be-
cause of the additional wave families and nonlinear couplings involved, as well as the
additional diffusive processes—including resistive and ion-neutral drift terms (see
Section 2.1.3). When the magnetic field B is strong, in the sense that the Alfvén
speed vA ≡ B/

√
4πρ satisfies vA 
 v(�), a directionality is introduced such that the

correlations of the flow variables may depend differently on r||, r⊥, k||, and k⊥, the
displacement and wavevector components parallel and perpendicular to B̂.

For incompressible magnetohydrodynamics (MHD) turbulence, Goldreich &
Sridhar (1995) introduced the idea of a critically balanced anisotropic cascade, in
which the nonlinear mixing time perpendicular to the magnetic field and the propaga-
tion time along the magnetic field remain comparable for wavepackets at all scales, so
that vAk|| ∼ v(k⊥, k||)k⊥. Interactions between oppositely directed Alfvén wavepackets
traveling along magnetic fields cannot change their parallel wavenumbers k|| = k · B̂,
so that the energy transfers produced by these collisions involve primarily k⊥; i.e., the
cascade is through spatial scales �⊥ = 2π/k⊥, with v(�⊥)3/�⊥ ∼ constant. Combining
critical balance with a perpendicular cascade yields anisotropic power spectra (larger
in the k⊥ direction); at a given level of power, the theory predicts k|| ∝ k2/3

⊥ . Magnetic
fields and velocities are predicted to have the same power spectra.

Unfortunately, for the case of strong compressibility (c s � v) and moderate
or strong magnetic fields (c s � vA � v), which generally applies within molecu-
lar clouds, there is as yet no simple conceptual theory to characterize the energy
transfer between scales and to describe the spatial correlations in the velocity and
magnetic fields. On global scales, the flow may be dominated by large-scale (magne-
tized) shocks that directly transfer energy from macroscopic to microscopic degrees
of freedom. Even if velocity differences are not sufficient to induce (magnetized)
shocks, for trans-sonic motions compressibility implies strong coupling among all
the MHD wave families. However, within a sufficiently small subvolume of a cloud
(and away from shock interfaces), velocity differences may be sufficiently subsonic
that the incompressible MHD limit and the Alfvénic cascade approximately holds
locally.

Even without direct energy transfer from large to small scales in shocks, a key
property of turbulence not captured in classical models is intermittency effects—the
strong (space-time) localization of dissipation in vortex sheets or filaments, which
can occur even with a conservative energy cascade. (Shocks in compressible flows
represent a different class of intermittent structures.) Signatures of intermittency
are particularly evident in departures of high-order structure function exponents
from the value p/3, and in non-Gaussian tails of velocity-increment probability
distribution functions (PDFs) (e.g., Lis et al. 1996, Sreenivasan & Antonia 1997).
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Proposed methods to account for intermittency in predicting correlation functions
for incompressible, unmagnetized turbulence have been discussed by She & Leveque
(1994) and Dubrulle (1994). Boldyrev (2002) proposed an adaptation of this frame-
work for the compressible MHD case, but omitted direct dissipation of large-scale
modes in shocks. Research on formal turbulence theory is quite active (see Elmegreen
& Scalo 2004 for a review of the recent theoretical literature relevant to the ISM),
although a comprehensive framework remains elusive.

Large-scale numerical simulations afford a complementary theoretical approach
to model turbulence and to explore the spatial correlations within flows. Numerical
experiments can be used to test formal theoretical proposals, and to provide con-
trolled, quantitative means to interpret observations—within the context of known
physics—when formal theories are either nonexistant or limited in detail. In drawing
on the results of numerical experiments, it is important to ensure that the compu-
tational techniques employed adequately capture the relevant dynamical processes.
For systems in which there are steep gradients of velocities and densities, grid-based
methods are more accurate in following details of the evolving flow (such as devel-
opment of instabilities) than smooth particle hydrodynamics (SPH) methods, which
have been shown to have difficulty capturing shocks and other discontinuities (Agertz
et al. 2007, submitted).

Spatial correlations within turbulent flows have been evaluated using numerical
simulations in a variety of regimes. Overall, results are consistent with theoretical
predictions in that power-law scalings in the velocity and magnetic field power spec-
tra (or structure functions) are clear when there is sufficient numerical resolution to
separate driving and dissipative scales. At resolutions of 5123 and above, results with a
variety of numerical methods show angle-averaged power-law slopes n = 7/2 − 11/3
(i.e., 3.5 − 3.67) for incompressible (i.e., v/c s � 1) MHD flows (Müller, Biskamp
& Grappin 2003; Haugen, Brandenburg & Dobler 2004; Müller & Grappin 2005)
and n = 3.5 − 4.0 for strongly compressible (v/c s � 5) flows both with (Vestuto
et al. 2003, Padoan et al. 2007) and without (Kritsuk, Norman & Padoan 2006) mag-
netic fields. Consistent with expectations, spectra are steeper for compressive velocity
components than for magnetic fields (and also sheared velocity components if the
magnetic field is moderate or strong), and steeper for more supersonic and/or more
weakly magnetized models (see also Boldyrev, Nordlund & Padoan 2002; Padoan
et al. 2004).

When strong mean magnetic fields are present, there is clear anisotropy in the
power spectrum, generally consistent with the scaling prediction of Goldreich &
Sridhar (1995), for both incompressible and compressible MHD turbulence (Cho &
Vishniac 2000; Maron & Goldreich 2001; Cho, Lazarian & Vishniac 2002a; Cho &
Lazarian 2003; Vestuto, Ostriker & Stone 2003).

In order to identify the sources of turbulence in astronomical systems, it is also im-
portant to determine the behavior of velocity and magnetic field correlations on spatial
scales larger than the driving scale. Numerical simulations, both for incompressible
(Maron & Goldreich 2001; Haugen, Brandenburg & Dobler 2004) and compressible
MHD turbulence (Vestuto, Ostriker & Stone 2003), show that the power spectra be-
low the driving wavenumber scale are nearly flat, n ≈ 0; that is, inverse cascade effects
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are limited. For spatially localized forcing (rather than forcing localized in k-space),
Nakamura & Li (2007) also found a break in the power spectrum, at wavelength
comparable to the momentum injection scale. Thus, the forcing scale for internally
driven turbulence in a system can be inferred observationally from the peak or knee
of the velocity correlation function. If v(�) continues to rise up to � ∼ L, the overall
scale of a system, this implies that turbulence is either (a) externally driven, (b) im-
posed in the initial conditions when the system is formed, or (c) driven internally to
reach large scales. Note that for systems forced at multiple scales, or both internally
and externally, breaks may be evident in the velocity correlation function (or power
spectrum).

2.1.2. Turbulent dissipation timescales. Recent numerical simulations under quite
disparate physical regimes have reached remarkably similar conclusions for the dis-
sipation rates of turbulence. On dimensional grounds, the specific energy dissipation
rate should equal εU3/�0, where E = U2/2 is the total specific kinetic energy, �0

is the spatial wavelength of the main energy-containing scale (comparable to the
driving scale for forced turbulence; �0 ≤ L), and ε is a dimensionless coefficient. For
incompressible turbulence, the largest-scale (40963 zones) incompressible, unmagne-
tized, driven-turbulence simulations to date (Kaneda et al. 2003) yield a dimensionless
dissipation coefficent ε = 0.6. For driven incompressible MHD turbulence (at 10243

resolution), the measured dimensionless dissipation rate ε ≡ (1/2)(Ėturb/Eturb)(�0/U)
also works out to be ε = 0.6 (Haugen, Brandenburg & Dobler 2004). Quite compa-
rable results also hold for strongly compressible (U/c s = 5) turbulence at a range
of magnetizations vA/c s = 0 − 10; Stone, Ostriker & Gammie (1998) found that
ε = 0.6 − 0.7 for simulations at resolution up to 5123 zones. For decaying compress-
ible MHD turbulence, damping timescales are also comparable to the flow crossing
time �0/v(�0) on the energy-containing scale (Mac Low et al. 1998; Stone, Ostriker
& Gammie 1998; Mac Low 1999; Padoan & Nordlund 1999). Thus, although very
different physical processes are involved in turbulence dissipation under different cir-
cumstances, the overall damping rates summed over all available channels (including
shock, reconnection, and shear structures) are nevertheless quite comparable. Defin-
ing the turbulent dissipation timescale as tdiss = Eturb/|Ėturb| and the flow crossing
time over the main energy-containing scale as t f = �0/U, tdiss = t f /(2ε). Because
velocities in GMCs increase up to the largest scale, �0 → d , the cloud diameter.
Assuming that on average U = √

3σlos, the turbulent dissipation time based on nu-
merical results is therefore given by

tdiss ≈ 0.5
d

σlos
. (2)

This result is in fact consistent with the assumption of Mestel & Spitzer (1956) that
turbulence in GMCs would decay within a crossing time.

The above results apply to homogenous, isotropic turbulence, but under certain
circumstances if special symmetries apply, turbulent damping rates may be lower. One
such case is for incompressible turbulence consisting of Alfvén waves all propagating
in the same direction along the magnetic field. Note that for the incompressibility
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condition ∇ · v = 0 to apply, turbulent amplitudes must be quite low (v � c s ). Be-
cause Alfvén waves are exact solutions of the incompressible MHD equations, no
nonlinear interactions, and hence no turbulent cascade, can develop if only waves
with a single propagation direction are present in this case (see, e.g., Chandran 2004
for a mathematical and physical discussion). A less extreme situation is to have an im-
balance in the flux of Alfvén waves propagating upward and downward along a given
magnetic field direction. Maron & Goldreich (2001) show that in decaying incom-
pressible MHD turbulence, the power in both upward- and downward-propagating
components decreases together until the lesser component is depleted. Cho, Lazarian
& Vishniac (2002a) quantify decay times of imbalanced incompressible turbulence,
finding for example that if the initial imbalance is ≈50% or ≈70%, then the time
to decay to half the initial energy is increased by a factor 1.5 or 2.3, respectively,
compared to the case of no imbalance.

For even moderate-amplitude subsonic velocities, however, Alfvén waves couple
to other wave families, and the purely Alfvénic cascade is lost. For strongly super-
sonic motions, as are present in GMCs, the mode coupling is quite strong. As a
consequence, even a single circularly polarized Alfvén wave cannot propagate with-
out losses; a parametric instability known as the decay instability (Sagdeev & Galeev
1969) develops in which three daughter waves (a forward-propagating compressive
wave and two oppositely propagating Alfvén waves when β � 1) grow at the expense
of the mother wave. The initial growth rate of the instability is γ = (0.1 − 0.3)kvA

when v(k)/c s = 1 − 3 and β ≡ 2c 2
s /v

2
A = 0.2, and larger for greater amplitudes and

smaller β (Goldstein 1978). The ultimate result is decay into fully developed tur-
bulence (Ghosh & Goldstein 1994; Del Zanna, Velli & Londrillo 2001). Thus, for
conditions that apply within GMCs, even if there were a localized source of purely
Alfvénic waves (i.e., initially 100% imbalanced), the power would rapidly be converted
to balanced, broad-spectrum turbulence with a short decay time. The conclusion that
turbulent damping times within GMCs are expected to be comparable to flow cross-
ing times has important implications for understanding evolution in star-forming
regions; these are discussed in Sections 3.1 and 3.2.2.

2.1.3. Physical scales in turbulent flows. In classical incompressible turbulence,
the only physical scales that enter are the outer scale �0 at which the medium is
stirred, and the inner Reynolds scale �ν at which viscous dissipation occurs. Assuming
Kolmogorov scaling v(�) = v(�0)(�/�0)1/3 [for v(�) ∼ σv(�) ∼ �v(�)], the dissipation
scale is

�ν

�0
=

[
ν

�0v(�0)

]3/4

≡ Re−3/4. (3)

Here Re ≡ v(�0)�0/ν is the overall Reynolds number of the flow; if turbulence in-
creases up to the largest scales then Re = UL/ν. With ν ∼ c s λmfp for λmfp, the mean
free path for particle collisions, �ν/�0 ∼ (λmfp/�0)3/4[v(�0)/c s ]−3/4. In fact, the velocity-
size scaling within GMCs has power-law index q closer to 1/2 than 1/3 on large
scales, because large-scale velocities are supersonic and therefore the compressible-
turbulence results apply. Allowing for a transition from q = 1/2 to q = 1/3 at an
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intermediate scale �s where v(�s ) = c s (see below), �ν = �1/4
s λ

3/4
mfp. Using typical GMC

parameters so that λmfp ∼ 1013 cm and �s = 0.03 pc yields �ν ∼ 3 × 10−5 pc. This
is tiny compared to the sizes, ∼0.1 pc, of self-gravitating cores in which individual
stars form.

The length �s introduced above marks the scale at which the RMS turbulent
velocity is equal to the sound speed. At larger scales, velocities are supersonic and
compressions are strong; at smaller scales, velocities are subsonic and compressions
are weak. Taking v(�) = v(�0)(�/�0)q , the sonic scale is �s = �0[c s /v(�0)]1/q , or �s ≈
�0[c s /v(�0)]2 when q ≈ 1/2. Density perturbations with characteristic scales ∼�s will
have order-unity amplitude in an unmagnetized medium. In a magnetized medium,
the amplitude of the perturbation imposed by a flow of speed v will depend on the
direction of the flow relative to the magnetic field. Flows along the magnetic field
will be as for an unmagnetized medium, whereas flows perpendicular to the magnetic
field will create order-unity density perturbations only if v > (c 2

s + v2
A)1/2. Note that

the thermal scale, at which the line-of-sight turbulent velocity dispersion σv/
√

3 is
equal to the 1D thermal speed σth, is larger than �s by a factor of ∼3.

Another scale that is important for MHD turbulence in fully-ionized gas is the
resistive scale; below this scale Ohmic diffusion would smooth out strong bends in the
magnetic field, or would allow folded field lines to reconnect. The resistive scale �η

is estimated by equating the diffusion term ∼ηB(�)/(4π�2) to the flux-dragging term
∼v(�)B(�)/� in the magnetic induction equation. Defining the magnetic Reynolds
number as Rm ≡ v(�0)�04π/η, and taking v(�) ∼ c s (�/�s )1/3 at small scales, this yields
�η/�ν = (Re/Rm)3/4. Because the magnetic Prandtl number Rm/Re is very large
(∼106), the magnetic field could, for a highly-ionized medium, remain structured at
quite small scales (see Cho, Lazarian & Vishniac 2002b for discussion of this in the
diffuse ISM).

In fact, under the weakly-ionized conditions in star-forming regions, ambipolar
diffusion (ion-neutral drift) becomes important well before the resistive (or Ohmic
diffusion) scale is reached. Physically, the characteristic ambipolar diffusion scale �AD

is the smallest scale for which the magnetic field (which is frozen to the ions) is well
coupled to the bulk of the gas for a partially ionized medium. An estimate of �AD

is obtained by equating the ion-neutral drift speed, ∼B0δB(mi + m)/(4πρiραin�),
with the turbulent velocity, δv. Here, αin = 〈σin|vi − vn|〉 ≈ 2 × 10−9 cm3s−1 is the
ion-neutral collision rate coefficient (Draine, Roberge & Dalgarno 1983), and mi , m
and ρi , ρ are the ion and neutral mass, and ion and neutral density. The resulting
ambipolar diffusion scale, assuming mi 
 m (for either metal or molecular cations)
and δv ≈ δB/

√
4πρ, is

�AD = vA

niαin
≈ 0.05 pc

( vA

3 km s−1

) ( ni

10−3 cm−3

)−1
. (4)

Here, vA is the Alfvén speed associated with the large-scale magnetic field B0.
The ambipolar diffusion scale (Equation 4) depends critically on the fractional

ionization, which varies greatly within star-forming regions. Regions with moderate
AV � 5 can have relatively large ionization fraction owing to UV photoionization,
whereas regions with large AV are ionized primarily by cosmic rays (see Section 2.3.1).
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For example, if the electrons are attached to polycyclic aromatic hydrocarbons (PAHs)
in dense cores, the ion density is ni ≈ 10−3(nH/104 cm−3)1/2(ζCR/3 × 10−17 s−1)1/2

(Tielens 2005), where ζCR is the cosmic-ray ionization rate per H atom. Because
ni ∝ n1/2, we can express Equation 4 in terms of column density and magnetic-field
strength as �AD/� = 0.09(B/10μG)/(NH/1021 cm−2).

For spatial wavelengths λ = 2π/k < π�AD, MHD waves are unable to propagate
in the coupled neutral-ion fluid, because the collision frequency of neutrals with
ions, niαin, is less than (half) the wave frequency ω = kvA. For λ > π�AD, MHD
waves are damped at a rate of ωπ�AD/λ (Kulsrud & Pearce 1969). Thus, at scales
� � �AD, the magnetic field will be essentially straight and uniform in magnitude,
and any further turbulent cascade will be as for an unmagnetized medium. The scale
�AD is also comparable to the thickness of the C-type shocks that are typical under
prevailing conditions within GMCs (Draine & McKee 1993). Further discussion
of the interaction between turbulence and ambipolar diffusion is given by Zweibel
(2002), Fatuzzo & Adams (2002), and Heitsch et al. (2004).

2.1.4. Density structure imposed by turbulence. When turbulent velocities at a
given scale are supersonic, they impose density variations within the flow at that scale.
For star-forming regions, in which turbulent velocities are increasingly supersonic
for scales �0.1 pc, the density becomes strongly structured over a wide range of scales
(Figure 1). This density structure—which is crucial to the star-formation process—
can be characterized statistically in a variety of ways.

The simplest (one-point) statistic is the distribution of mass (or volume) as a func-
tion of density, usually referred to as the density PDF (probability density function).
For isothermal gas and supersonic turbulence (either forced or decaying), a number of
3D numerical simulations both with (Ostriker, Stone & Gammie 2001; Ostriker 2003;
Li et al. 2004) and without (Nordlund & Padoan 1999, Klessen 2000) magnetic fields
have shown that the density PDF approaches a log-normal distribution when self-
gravity is unimportant. This functional form can be understood (Vázquez-Semadeni
1994, Passot & Vázquez-Semadeni 1998) to arise as a consequence of multiple, inde-
pendent dynamical events that alter the density according to ρ/ρ̄ = �i (1+δi ), where
δi is >0 (or <0) for compressions (or rarefactions). From the Central Limit Theorem,
log(ρ/ρ̄) is the sum of independent random variables, and should therefore approach
a Gaussian distribution. When the equation of state departs from a simple isothermal
form, the density PDF still follows a log-normal distribution over a range of densi-
ties, but aquires power-law tails either at high or low density depending on whether
the equation of state is softer or stiffer than isothermal (Passot & Vázquez-Semadeni
1998, Scalo et al. 1998; see also Wada 2001).

For a log-normal distribution, the fraction of volume (V ) or mass (M) as a function
of x ≡ ln(ρ/ρ̄) is given by f (x)d x with

fV,M = 1√
2πσ 2

x

exp
[−(x ± |μx |)2

2σ 2
x

]
, (5)

where the mean and dispersion of the distributions are related by μx = σ 2
x /2, and

the upper and lower signs correspond to volume- and mass-weighting, respectively.
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Figure 1
Map of the molecular gas in the Orion-Monoceros region. Color scale and contours show the
velocity-integrated intensity of the J = 1 − 0 CO line (Wilson et al. 2005). Orion A (lower
region), Orion B (middle right), and Mon R2 (slightly left of center) each contain a total gas
mass ∼105 M�. The angular size of 10◦ corresponds to ≈80 pc at the mean distance of the
Orion complex. The Mon R2 region appears to be several hundred parsecs farther away than
the Orion clouds.

For a log-normal distribution, the mass-weighted median density (half of the mass
is at densities above and below this value) is ρmed = ρ̄ exp(μx), whereas the mass-
weighted mean density is 〈ρ〉M = ρ̄ exp(2μx). Based on 3D unmagnetized simulations,
Padoan, Jones & Nordlund (1997) propose that μx ≈ 0.5 ln(1 + 0.25M2). Other
3D simulations with magnetic fields (β = 0.02 − 2) have found μx ≈ 0.5 − 1 for
M ≈ 5 − 10 (Ostriker et al. 2001). These models confirm that the mean density
contrast generally grows as the turbulence level increases, but find no one-to-one
relationship between μx and M [or the fast magnetosonic Mach number, MF ≡
σv/(c 2

s + v2
A)1/2]. The large scatter at large M is because the flow is dominated by a

small number of large-amplitude modes (i.e., large cosmic variance), some of which
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are compressive and some of which are shear. With magnetic fields, Ostriker, Stone
& Gammie (2001) found that the lower envelope of the μx distribution increases with
MF according to μx,min = 0.2 ln(1 + M2

F ) + 0.5 for MF = 0.5 − 2.5.
Because the velocity field is spatially correlated, the density distribution will also

show spatial correlations over a range of scales. Density correlations can be char-
acterized in terms of the autocorrelation function, the power spectrum, and struc-
ture functions of various orders (cf. Section 2.1.1); usually, analyses are applied to
δρ ≡ ρ − ρ̄. Using delta-variance techniques, Mac Low & Ossenkopf (2000)
show that correlations in density decrease for wavelengths above the velocity driv-
ing scale, and that there are relatively modest differences in the density correla-
tions between unmagnetized and magnetized models when all other properties are
controlled.

Kim & Ryu (2005) have analyzed the dependence of the spectral index on Mach
number for 3D turbulence forced at large spatial scales, using isothermal, unmag-
netized simulations at resolution 5123. For M � 1, the indices nρ or n′

ρ of the
density power spectrum |δρ(k)|2 are similar to those of the velocity field in in-
compressible turbulence—i.e., near n = 11/3 or n′ = 5/3; this is simply because
δρ(k)/ρ̄ ∼ −k̂ · v(k)/c s for low-amplitude quasi-sonic compressions (note that even
when M = 1, the Mach number for the compressive component of the velocity
field is <1). As the Mach number increases, the density power spectrum flattens,
reaching n′

ρ ≈ 0.5 for M = 12. For comparison, a 1D top hat—corresponding to a
large clump in three dimensions—would have n′ = 2, whereas a 1D delta function—
corresponding to a thin sheet or filament in three dimensions—would have n′

ρ = 0.
Note that for the density to take the form of multiple delta functions, the velocity
field must generally be a composite of step functions—corresponding to shocks—and
has n′ = 2 for the velocity power spectrum (as discussed above). The low value of n′

ρ

at large Mach number implies the density structure becomes dominated by curved
sheets and filaments. Curved sheets represent stagnation regions (of the compressive
velocity field) where shocked gas from colliding flows settles, and filaments mark the
intersections of these curved sheets.

Other statistical descriptions of density structure include fractal dimensions (e.g.,
Elmegreen & Falgarone 1996, Stutzki et al. 1998), multifractal spectra (Chappell &
Scalo 2001), and hierarchical structure trees (Houlahan & Scalo 1992); see Elmegreen
& Scalo (2004) for a discussion. The spatial correlation of density can also be char-
acterized in terms of clump mass functions. Clump-finding techniques have been
applied to simulations of supersonic tubulent flows by a number of groups; these
results are discussed and compared to observation in Section 3.3.

2.1.5. Observations of turbulence. For observed astrophysical systems, the intrin-
sic properties of turbulence cannot be directly obtained, owing to line-of-sight pro-
jection and the convolution of density and velocity in producing observed emission.
A number of different techniques have been developed, calibrated using simulations,
and applied to observed data, in order to deduce characteristics of the 3D turbulent
flow from the available observations, which include spectral line data cubes (from
molecular transitions), continuum emission maps (from dust), maps of extinction
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(using background stars), and maps of polarization (in extinction and emission from
dust). Elmegreen & Scalo (2004) review the extensive literature on observations of
turbulence. Here, we mention just a few results.

The defining property of turbulent motion—in contrast to, for example, the purely
random motions of gas particles in a Maxwell-Boltzmann distribution or the highly
systematic motions of stars in a rotating system—is the stochastic yet scale-dependent
behavior of flow correlations. Larson (1981) was the first to draw attention to the
genuine turbulent nature of motions internal to star-forming regions, as expressed
by an empirical scaling law of the form in Equation 1 with q = 0.38. Using more
homogeneous data, Solomon et al. (1987) obtained a linewidth-size scaling index
q ≈ 0.5 for GMCs as a whole. Passot, Pouquet & Woodward (1988) pointed out
that the linewidth-size scaling σv(�) ∝ �1/2 observed in star-forming regions is indeed
what would be predicted for Burgers turbulence, a more appropriate model than
Kolmogorov turbulence given the strongly supersonic conditions.

Many subsequent studies have been made of observed scaling behavior of veloc-
ities, both for subsystems of a given star-forming region, and for systems that are
spatially disjointed. A number of methods have been developed for these investiga-
tions, including autocorrelation analysis (Miesch & Bally 1994) and delta-variance
analysis (Ossenkopf et al. 2006) applied to line centroids, the spectral correlation
function (Rosolowsky et al. 1999), velocity channel analysis (Lazarian & Pogosyan
2004, Padoan et al. 2006), and principal component analysis (PCA) (Brunt & Heyer
2002). Overall, analyses agree in finding power-law linewidth-size relations, with sim-
ilar coefficients and power-law exponents close to q = 0.5. The lack of features in
velocity correlations at intermediate scales, and more generally the secular increase
in velocity dispersion up to sizes comparable to the whole of a GMC, indicates that
turbulence is driven on large scales within or external to GMCs (e.g., Ossenkopf &
Mac Low 2002, Brunt 2003).

Interestingly, turbulence appears to have a universal character within most of the
molecular gas in the Milky Way, in the sense that the same scaling laws with the same
coeffcients fit both entire GMCs and moderate-density substructures (observed via
CO lines) within them. Using PCA, Heyer & Brunt (2004) find a fit to the amplitudes
of line-of-sight velocity components as a function of scale following

δv = 0.9
(

Lpca

1 pc

)0.56±0.02

km s−1
, (6)

based on composite data of all PCA components from scales Lpca ∼ 0.03 − 30 pc in
a sample of 27 molecular clouds. Using data just within individual clouds, Heyer &
Brunt (2004) find a mean scaling exponent that is slightly lower, q = 0.49 ± 0.15.
Note that the lengths Lpca entering the relation (Equation 6) are the characteristic
scales of PCA eigenmodes, and may differ from size scales defined in other ways. For
example, the effective GMC cloud diameters as measured by Solomon et al. 1987
are on average about four times the maximum Lpca found in each cloud. Based on
the scaling law above, the sonic length will be similar, �s ∼ 0.03 pc (allowing for
varying definitions of size), in all GMCs. We discuss this empirical result further in
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Section 3.1; note that strongly self-gravitating clumps with high density and surface
densities depart from the relation given in Equation 6.

For evaluating the density distribution, the most unbiased measurements use
dust extinction maps (see Lada, Alves & Lombardi 2007 and references therein).
A promising new technique for observing the density distribution uses scattered IR
light (Foster & Goodman 2006), which can probe the structure of molecular clouds
for visual extinctions of 1 − 20 mag at very high spatial resolution (Padoan, Juvela &
Pelkonen 2006). Consistent with the prediction of numerical simulations (Ostriker,
Stone & Gammie 2001; Vázquez-Semadeni & Garcı́a 2001), distributions of extinc-
tion follow log-normal functional forms to an excellent approximation; distributions
of integrated intensity from molecular lines, however, are not log-normal (Ridge et al.
2006), presumably owing to a combination of chemistry and/or optical depth effects.
Column density distributions, of course, cannot be directly inverted to obtain volume
density distributions. Because the Fourier transform of the column density, N(kx, ky ),
is equal to δρ(kx, ky ; kz = 0) (up to an overall normalization; here z is the line-of-
sight direction) if statistical isotropy holds, then at least the shape of the density power
spectrum can be obtained from a well-sampled map of column density. Assuming
isotropy, integrated-intensity 12CO and 13CO line maps yield density power spectra
|δρ(k)|2 ∝ k−nρ with nρ = 2.5 − 2.8 (Bensch, Stutzki & Ossenkopf 2001), which is
consistent with the large M results for density power spectra n′

ρ = nρ − 2 ≈ 0.5
obtained in the simulations of Kim & Ryu (2005). In principle, features in the density
power spectrum should be evident both at the sonic scale, �s , and the Jeans scale
(these scales are comparable in star-forming regions—Padoan 1995). A first step to-
ward identifying features in the density power spectrum, using velocity-integrated
CO intensity, was taken by Blitz & Williams (1997). It will be very interesting to
investigate column density power spectra based on high-resolution extinction maps
in both self-gravitating GMCs and unbound molecular clouds to evaluate the slopes
and search for evidence of these breaks.

Other measures of density structure, including the fractal dimension D ≈ 2.3
empirically measured by Elmegreen & Falgarone (1996), are in agreement with sim-
ulations of strongly compressible turbulence (Kritsuk, Norman & Padoan 2006). In
addition, the typical range of density contrasts obtained for 3D supersonic tubu-
lence (see Section 2.1.4) is consistent with the compressions required to explain the
low effective volume filling factors of gas deduced from CO observations of GMCs
(Ostriker, Gammie & Stone 1999). If 〈ln(n/n̄)〉M = μx (Equations), then the mass-
weighted mean density is 〈n/n̄〉M = 〈(n/n̄)2〉V = exp(2μx), so that μx ≈ 1.5 yields
a local density n = 103 when n̄ = 50, in agreement with inferred filling factors
∼ 0.1 (Bally et al. 1987; Williams, Blitz & Stark 1995). Observational estimates of
the density and filling factor are often made under the assumption of a constant
clump density, however, not the broad distribution of densities expected for a log
normal distribution, which may introduce some differences. In more detail, Padoan
et al. (1999) have shown that the statistical properties of 13CO spectra seen in the
star-forming Perseus molecular cloud can be well reproduced by synthetic non-local
thermodynamic equilibrium (LTE) spectra created using simulation data cubes from
nonself-gravitating supersonic turbulence simulations.
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2.2. Self-Gravity

The effects of self-gravity on a turbulent cloud can be analyzed with the aid of the
virial theorem, which in Lagrangian form (i.e., for a fixed mass) is

1
2

Ï = 2(T − Ts ) + B + W (7)

(Chandrasekhar & Fermi 1953b, Mestel & Spitzer 1956), where I = ∫
r2dm is pro-

portional to the trace of the inertia tensor of the cloud. (It is often assumed that
the sign of Ï determines whether the cloud is expanding or contracting, but in fact
it determines the acceleration of the expansion or contraction; Ballesteros-Paredes
2006.) The term

T =
∫

Vcl

(
3
2

Pth + 1
2
ρv2

)
d V ≡ 3

2
ρ̄σ 2Vcl (8)

is the total kinetic energy in the cloud (thermal plus bulk), where σ 2 is the 1D mean
square velocity [including both thermal σ 2

th and nonthermal (turbulent) σ 2
nt = σ 2

v /3
terms] in the cloud, Vcl is the volume of the cloud, and Ts = ∮

Pthr · dS is the surface
kinetic term. The term

B = 1
8π

∫
Vcl

B2d V + 1
4π

∮
r ·

(
BB − 1

2
B2I

)
· dS (9)

is the net magnetic energy, and includes the effects of the distortion of the field outside
the cloud. The volume and surface magnetic terms cancel for a completely uniform
magnetic field, because a uniform field exerts no force. Finally,

W = −
∫

ρ r · ∇� d V (10)

is the gravity term, equal to the gravitational self-energy (1/2)
∫

ρ� d V provided that
the acceleration due to masses outside the system is negligible (as is generally the case
for dense clouds embedded in a diffuse turbulent background; Dib et al. 2007).

The virial theorem can also be written in Eulerian form, so that it applies to a
fixed volume (McKee & Zweibel 1992); in that case, the surface term for the kinetic
energy includes the dynamic pressure

∮
ρvv · dS, and the theorem itself includes a

term (1/2)(d/dt)
∫

(ρvr2) · dS on the left-hand side. This form of the virial theorem is
particularly appropriate in a turbulent medium, in which the mass of a cloud is not
necessarily fixed. With this form of the equation, clouds that are actively forming or
dispersing may have surface kinetic terms comparable to the volume kinetic terms.

Ballesteros-Paredes, Vázquez-Semadeni & Scalo (1999) examined the various
terms in the Eulerian virial theorem for clumps and cores in their turbulent, self-
gravitating MHD simulations, and found that the time-dependent terms on the left-
hand side are significant, and that the surface terms are generally comparable to the
volume terms. Dib et al. (2007) confirmed this and also found that only objects with
large density contrasts are virialized. However, in contrast to the other terms in the
virial theorem, the time-dependent terms can change sign, so they become less im-
portant if the virial theorem is averaged over time for an individual cloud (provided
the cloud lives more than a dynamical time) or if it is averaged over an ensemble of
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clouds (McKee 1999). In Section 3.1, we discuss the application of the virial theorem
both to observed molecular clouds, clumps, and cores, and to condensations identified
within numerical simulations.

The virial parameter is defined as being proportional to the ratio of the total
kinetic energy to the gravitational energy (Bertoldi & McKee 1992; cf. Falgarone,
Puget & Perault 1992),

αvir ≡ 5σ 2 R
GM

, (11)

where the numerical coefficient is chosen so that αvir = 1 for a uniform, unmagne-
tized gas sphere in virial balance (W = −2T ; but note that such a sphere is not in
hydrostatic equilibrium). This relation implies that the mean pressure in a cloud is
proportional to the square of the mean surface density, �̄,

P̄tot = φP̄ G�̄2, (12)

where φP̄ ∝ αvir is a numerical factor of order unity for gravitationally bound objects
(McKee & Tan 2003). The total pressure includes the magnetic pressure; fluctuating
magnetic fields have an energy that is about 60% of that of the turbulent kinetic energy
(Stone, Ostriker & Gammie 1998) and contribute an effective pressure support that
is about 30% of the turbulent kinetic pressure support (McKee & Tan 2003; note
that T − Ts and B appear in Equation 7 with coefficients 2 and 1, respectively).
Gravitationally bound objects have αvir ∼ 1, which (because M ∼ ρR3) defines
gravitational length, time, and mass scales,

RG = σ/(Gρ)1/2, tG = 1/(Gρ)1/2, and MG = σ 3/(G3ρ)1/2, (13)

respectively. These scales, derived essentially from dimensional analysis, govern the
structure and stability of self-gravitating clouds (the density ρ can be chosen to be
the central density, the mean density, or the density at the surface, depending on the
application). The gravitational timescale is often expressed in terms of the free-fall
time, which is the time for a pressure-free, spherical cloud to collapse to a point owing
to its self-gravity,

tff =
(

3π

32Gρ̄

)1/2

= 1.37 × 106
(

103 cm−3

n̄H

)1/2

year, (14)

where the numerical value is based on a He abundance of 10% by number.
The simplest case of a self-gravitating cloud is a static isothermal cloud with no

magnetic field. For a given surface pressure Pth,0 = ρ0σ
2
th, the critical mass, Mcr—

i.e., the maximum mass for such a cloud to be in hydrostatic equilibrium (stable or
unstable)—is the Bonnor-Ebert mass (Bonnor 1956, Ebert 1957),

MBE = 1.182
σ 4

th

(G3 Pth,0)1/2
= 1.182

σ 3
th

(G3ρ0)1/2
. (15)

For conditions typical of dense clumps within low-mass star-forming regions, this is
of order a solar mass: MBE = 0.66(T/10 K)2/(Pth/3 × 105 kB cm−3 K)1/2 M�, where
kB is Boltzmann’s constant and the pressure is normalized to the mean kinetic pres-
sure in a typical GMC (Section 3.1) (which is similar to the mean thermal pres-
sure in dense clumps). Note that the Bonnor-Ebert mass is very nearly equal to the
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characteristic gravitational mass MG(ρ0) when evaluated with the conditions at the sur-
face of the cloud. The radius of a Bonnor-Ebert sphere is RBE = 0.486σth/(Gρ0)1/2 =
0.486RG(ρ0); this is comparable to the Jeans length (see below).

The importance of the magnetic field to cloud structure is determined by the
ratio of the mass to the magnetic critical mass M�, which is defined by the condition
that the magnetic energy must be equal to the gravitational energy, B = |W|, for a
cold cloud in magnetostatic equilibrium:

M� ≡ c�
�

G1/2
, (16)

where � is the magnetic flux threading the cloud (e.g., see the review by McKee et al.
1993). Magnetic fields alone cannot prevent gravitational collapse in magnetically
supercritical clouds (M > M�), whereas gravitational collapse is not possible in mag-
netically subcritical clouds (M < M�); keep in mind, however, that M can change as
the result of flows along the field, and M� can change owing to ambipolar diffusion.
The numerical coefficient c� depends on the internal distribution of density and mag-
netic fields. A cold cloud with a poloidal field and a constant mass-to-flux ratio has
c� = 0.17 (Tomisaka, Ikeuchi & Nakamura 1988), essentially identical to the critical
value of the mass-to-flux ratio for an infinite cold sheet, G1/2(�/B)cr = 1/(2π ) � 0.16
(Nakano & Nakamura 1978). For clouds with two other distributions of the mass-to-
flux ratio, Tomisaka, Ikeuchi & Nakamura (1988) found that the critical mass-to-flux
ratio for the central flux tube corresponds to c� � 0.17 − 0.18. For more complex
field geometries, the magnetic flux does not determine the mass that can be supported
by magnetic stresses; for example, if the field is poloidal, with half the field pointing
one way and half the other, so that the total flux is zero, the mass that could be sup-
ported would initially be M�, but it would go to zero as the field reconnects. For a
random field, arguments based on McKee & Holliman (1999) suggest that the mass
that can be supported by magnetic fields is comparable to that in Equation 16, but
with � replaced by π R2〈B2〉1/2. Of course, when turbulent magnetic fields are present
so are turbulent velocities, which lend their own support to the cloud (see below).

The magnetic critical mass can also be expressed in terms of the mean density and
magnetic field in the cloud (Mouschovias & Spitzer 1976),

MB

M
≡

(
M�

M

)3

. (17)

For an ellipsoidal cloud of size 2Z along the axis of symmetry and radius R normal
to the axis, this becomes (Bertoldi & McKee 1992)

MB = 79c 3
�

(
R
Z

)2
v̄3

A

(G3ρ̄)1/2
= 1020

(
R
Z

)2 (
B̄

30 μG

)3 (
103 cm−3

n̄H

)2

M�, (18)

where the latter expression uses c �̄ = 1/2π . Note that MB has the same form as
the gravitational mass MG, with the velocity dispersion σ replaced by the Alfvén
velocity v̄A ≡ B̄/(4πρ̄)1/2. Based on the idea that cores form from sheets that are
supported by kinetic pressure along the magnetic field and magnetic tension in the
(perpendicular) plane, Shu, Li & Allen (2004) have introduced another mass scale,
M0 ≡ π2σ 4/(G3/2 B̄), which yields values ∼M� when σ → σth and B̄ → 30 μG.
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Just as in the case of stellar structure, it is useful to consider polytropic models of
molecular clouds, in which the pressure is a power-law function of the density,

P (r) = Kρ(r)γp , (19)

where K is constant and γp is often written as 1 + 1/n. Here, P (r) and ρ(r) represent
the total pressure and density averaged over the surface of a sphere of radius r . This
approach is based on the microturbulent approximation, in which the turbulent pres-
sure ρσ 2

nt is included in the total pressure (Chandrasekhar 1951a,b); this is equivalent
to assuming that the random dynamical motions are isotropic. For a given cloud at
a given time, this is reasonable for small-scale motions, but the approximation be-
comes worse as the scale of the motion becomes comparable to the scale on which
the pressure is being evaluated. However, just as in the case of the virial theorem,
the microturbulent approximation becomes better—for objects that live more than
a dynamical time—if a time average is taken. Polytropes are spherical, so polytropic
models apply only to objects with well-defined centers; for such objects, an angular
average is also necessary, which improves the accuracy of the microturbulent approx-
imation. Star-forming clumps and cores often appear centrally concentrated and are
therefore suitable for modeling with a polytrope, whereas many GMCs do not appear
to have well-defined centers and are not very suitable for polytropic models.

For a polytrope, the velocity dispersion obeys σ 2 = P/ρ ∝ ργp−1. If the mean den-
sity decreases with increasing scale (as it does for an object in hydrostatic equilibrium),
it follows that the velocity dispersion increases with scale for γp < 1, which is consis-
tent with observations of molecular clouds (Maloney 1988). [Because n = 1/(γp − 1)
is negative in this case, such polytropes are often referred to as negative-index poly-
tropes.] The stability of a polytrope depends on both γp and on its adiabatic index
γ , which describes the change in the pressure associated with a given perturbation
in density, δ ln P = γ δ ln ρ. The value γ = 4/3 is critical for spherical clouds: clouds
with γ > 4/3 are gravitationally stable for arbitrarily large masses, whereas those with
γ < 4/3 are unstable for sufficiently large masses, or, at fixed mass, for sufficiently
high ambient pressures. Correspondingly, the gravitational mass MG is independent
of density for γ = 4/3. Polytropes with γp < 6/5 must be confined by an ambient
pressure (Chandrasekhar 1939), and their properties are determined by the pres-
sure of the ambient medium. McKee & Holliman (1999) show that polytropes with
0 < γp ≤ 1 have masses ≤1.182 MG(ρ0); the mean density and pressure of these
polytropes are <3.8 times the surface values.

As discussed in Section 2.1.5, turbulent regions exhibit a line width–size relation
in which the velocity dispersion averaged over a volume increases systematically with
size scale, σnt ∝ rq . Observations often show q � 1/2, the value expected for Burgers
turbulence (see Section 2.1.1). In general, this linewidth-size relation reflects the
statistical increase in velocity differences with separation between two points, rather
than the absolute increase in the local turbulent velocity amplitude with distance from
a common center. If the medium is gravitationally stratified, however, the central point
has a physical significance, and it is not currently known whether in this situation q
varies significantly (locally or globally) from its value in a nonstratified medium.
Observations of individual low-mass cores indicate increasing linewidths away from
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the centers, with q � 1/2 on large scales (Goodman et al. 1998); similar observations
for star-forming clumps or high-mass cores, which are supersonically turbulent, are
not yet available. In polytropic models with σnt ∝ ρ(γp−1)/2 ∝ rq , the density follows a
power-law in radius, ρ ∝ r−kρ , with kρ = 2q/(1−γp). In hydrostatic equilibrium, kρ =
2/(2−γp) must hold, so that q = (1−γp)/(2−γp); the value q = 1/2 thus corresponds
to γp → 0. This has motivated the study of equations of state for turbulent gas that
include a pressure proportional to the logarithm of the density, so-called logatropes
(Lizano & Shu 1989, Gehman et al. 1996). McLaughlin & Pudritz (1996) pointed out
a difficulty with previous logatropic models and developed a variant that overcame
this problem; however, their model leads to linewidths that actually decrease near
the edge of the cloud (McKee & Tan 2003). An alternative model for clouds in
which the inner regions are supported by thermal pressure and the envelopes are
supported by turbulent pressure is the TNT (thermal/nonthermal) model, in which
the density is assumed to be given by the sum of two power-laws, one with kρ = 2,
representing a singular isothermal sphere (SIS), and one with kρ < 2, representing a
turbulent envelope (Myers & Fuller 1992, Caselli & Myers 1995). A more rigorous
formulation of this type of model is that of a composite polytrope, in which the core
and envelope of the cloud have different values of γp (Curry & McKee 2000).

Cosmological simulations show that self-gravitating, pressureless matter con-
denses into filamentary structures (e.g., Springel et al. 2005). This reflects the nature
of evolution of cold, triaxial mass distributions under self-gravity (Lin, Mestel & Shu
1965): the first collapse is along the shortest axis, and the second collapse is along
the (original) intermediate axis, resulting in a filament aligned along the (original)
long axis. Molecular clouds often exhibit filamentary structure as well (Schneider &
Elmegreen 1979; Mizuno et al. 1995; Nagahama et al. 1998; Lada, Alves & Lada
1999). This may reflect the effects of self-gravitational evolution, similar to cos-
mic structure formation. However, it may also reflect the effects of strongly super-
sonic turbulence. Converging turbulent flows produce curved sheets of shocked gas
at stagnation surfaces, and the loci of these sheet intersections are filaments. The
morphology of cold, diffuse HI is similar to that in GMCs (e.g., Heiles & Troland
2003, McClure-Griffiths et al. 2006), suggesting that at least some of the filamentary
structure in star-forming clouds originates with multiscale supersonic turbulence; the
filaments that are created by turbulent flows may also be (or become) self-gravitating.

Virial balance in filamentary clouds implies GM/� = Gm� ∼ σ 2, where � is a length
along the filament and m� is the mass per unit length. Fiege & Pudritz (2000) have
shown that the virial gravity term for a cylindrical cloud with an arbitrary density
profile is W� = −Gm2

� , which, in contrast to the spherical case, is unchanged by
radial compression. They also showed that the critical mass/length is m�,cr = 2σ 2/G.
Filaments with γ = γp ≥ 1 are stable against compression, because the ratio of kinetic
energy to gravitational energy does not decrease during compression. Isothermal
filaments have a density ρ = ρc /[1 + (r/r0)2]2, where r0 = (2/π )1/2 RG(ρc ) (Ostriker
1964; the properties of filaments with γp ≥ 1 are not strongly affected by the ambient
medium for r 
 r0, which is why their properties are determined by the central
density ρc ). However, observed filaments often have ρ ∝ 1/r2 rather than 1/r4 (Lada,
Alves & Lada 1999). Fiege & Pudritz (2000) have shown that isothermal filaments
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with helical magnetic fields of the right magnitude can give rise to such a density
profile; alternatively, Nakamura & Umemura (2002) have shown that negative index
polytropes with γp slightly less than unity have ρ ∝ 1/r2.

In general, masses in excess of the critical mass are subject to fragmentation. In an
isothermal, uniform medium of density ρ0, the minimum wavelength for gravitational
fragmentation is the Jeans length,

λJ =
(

πσ 2
th

Gρ0

)1/2

= π1/2 RG(ρ0). (20)

The corresponding Jeans mass is MJ ≡ (4π/3)(λJ/2)3ρ0 = 2.47MBE, where we have
adopted the definition of Binney & Tremaine (1987) (the Jeans mass is elsewhere often
defined as ρ0λ

3
J = 6MJ/π , which is even larger than the Bonnor-Ebert mass). For

slabs and filaments, there is a fastest growing mode, which will determine the spacing
of fragments. For an isothermal slab with a surface density � and with ρc 
 ρ0 it
is λmax,slab ≈ 23/2λJ(ρc ) = 4σ 2

th/(G�), where the Jeans length is defined in terms of
the midplane density ρc . An isothermal filament with ρc 
 ρ0 has m� � m�,cr and
λmax,fil ≈ 1.25 × 23/2λJ(ρc ) (Larson 1985). These estimates assume that the gas is
optically thin; if it becomes opaque, fragmentation stops. Low & Lynden-Bell (1976)
show that fragmentation ceases for masses �0.004M� (including He—see Whitworth
et al. 2007), and that this is relatively insensitive to parameters.

For a thin, rotating disk, rotation stabilizes self-gravitational contraction for wave-
lengths greater than the Toomre length λT ≡ 4π2G�/κ2, where κ is the epicyclic
frequency (Toomre 1964). In order for a rotating gas disk to fragment, the maxi-
mum instability scale imposed by angular momentum considerations must exceed
the minimum length for fragmentation set by thermal pressure. The Toomre param-
eter Q ≡ κσth/(πG�) = (λmax,slab/λT)1/2, and must be �0.7 − 1 for gravitational
fragmentation in an isothermal rotating disk, depending on the strength of magnetic
fields (Goldreich & Lynden-Bell 1965; Kim, Ostriker & Stone 2002). Allowing for
turbulence and for the additional gravity of a stellar disk (for large-scale galactic
instabilities), the critical Q is larger (see Section 3.2.1). Real gases are not strictly
isothermal; Gammie (2001) has shown that in a Keplerian disk, the cooling time tcool

and angular velocity � = κ must satisfy the condition tcool � 3�−1 for gravitational
runaway to occur (the coefficient 3 is based on 2D simulations with γeff = 2, allowing
for dimensional reduction; Rice et al. (2005) showed that this coefficient can change
by a factor of a few depending on the adopted γ ). Nonlinear instability develops when
Q is small even for adiabatic disks, but gravitational collapse of the condensations that
form is ultimately halted if γ is sufficiently large (Kim & Ostriker 2001).

2.3. Magnetic Fields

The ISM is strongly magnetized, whereas stars are weakly magnetized. How the
mass-to-flux ratio increases so dramatically during star formation is one of the
classic problems of star formation (Mestel & Spitzer 1956). We shall characterize
this ratio by the ratio of the mass to the magnetic critical mass for poloidal fields,
μ� ≡ M/M� (Equation 16, Section 2.2). Heiles & Troland (2005) found that the
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median field in the cold HI phase of the ISM (the Cold Neutral Medium, or CNM)
is |B0| = 6.0±1.8 μG, and that the CNM is organized into sheets with column den-
sities 2.6 × 1018 cm−2 � NH � 2.6 × 1020 cm−2; the maximum column presumably
reflects the transition to molecular hydrogen. It follows that the CNM is magnetically
very subcritical, μ� < 0.16 (throughout this section; we evaluate M� with c� = 1/2π ,
the value appropriate for sheets). There are thus two parts to the magnetic flux prob-
lem: How does the mass-to-flux ratio increase to μ� � 2 so that gravitational collapse
can readily occur, and then how does it increase to the very large values (∼105−8) char-
acteristic of stars?

Astronomers have two primary methods of measuring the strength of magnetic
fields in the dense ISM: the Zeeman effect, which measures the line-of-sight com-
ponent, Blos; and the Chandrasekhar-Fermi method (Chandrasekhar & Fermi 1953),
which measures the component of the field in the plane of the sky, Bpos, by comparing
the fluctuations in the direction of Bpos with those in the velocity field (see the reviews
by Crutcher 2005 and Heiles & Crutcher 2005; note that in the diffuse ISM, magnetic
field strengths are also obtained by Faraday rotation and synchrotron observations,
with results consistent with Zeeman observations). The morphology of the field,
which is needed for the Chandrasekhar-Fermi method, can be measured from dust
polarization and from linear polarization of spectral lines (Goldreich & Kylafis 1981).
The largest compilation of magnetic field strengths in molecular clouds remains that
of Crutcher (1999), although it must be noted that the median temperature of the
regions with detected fields is 40 K, significantly greater than average. Inferring the
intrinsic field strength and column density from measurements of the line-of-sight
components is somewhat subtle (Heiles & Troland 2005); in particular, care must
be exercised in evaluating the average value of B‖/B using logarithmic values, be-
cause

〈
log B‖/B

〉
< log

〈
B‖/B

〉
. However, it is straightforward to infer the median

values: Bmed = 2Blos,med and, for sheets, Nmed = Nlos,med/2. Most of the structures
Crutcher (1999) studied are relatively dense cores, so it is plausible that they are
not sheet-like; in that case, the median value of μ� is 1.65 ± 0.2 [Heiles & Crutcher
2005; note that the values in Crutcher (1999) are based on c� = 0.12, whereas we
are using c� = 1/2π ], the cores are supercritical, and the magnetic field is unable to
significantly impede gravitational collapse. On the other hand, if the objects in his
sample are, in fact, sheet-like, then the median value of μ� is reduced to 0.8 and the
typical core is about critical. However, it should be noted that none of the cores have
observed line-of-sight fields strong enough to ensure that they are subcritical, and for
many cases only upper limits on the magnetic field strength are obtained. Subsequent
OH Zeeman observations by Bourke et al. (2001) have strengthened these conclu-
sions, although these authors suggest that observations with higher spatial resolution
are needed to determine whether the relatively low fields they infer (mostly upper
limits) are in part due to variations in the field structure within the telescope beam.

Crutcher (1999) also reached a number of other conclusions on the role of mag-
netic fields in cores and clumps within molecular clouds from his sample: the observed
structures are in approximate virial equilibrium; the kinetic and magnetic energies
are in approximate equipartition, as expected theoretically (Zweibel & McKee 1995);
correspondingly, the Alfvén Mach number is MA � 1; the observed motions are
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highly supersonic, with Ms ≡ √
3σnt/c s � 5; and, to within the errors, B ∝ ρ1/2,

which corresponds to a constant Alfvén velocity (for sources with measured fields,
as opposed to upper limits, the average value is vA � 2 km s−1, as found previously
by Heiles et al. 1993). Basu (2000) showed that the dispersion of the Alfvén Mach
number is significantly less than that in the Alfvén velocity in this sample. He argued
that a constant value of MA is to be expected if the clouds are strongly bound, so
that the surface pressure is negligible, and if μ� is about constant. Adopting a median
value MA = 1.0, from Crutcher (1999) gives a median value for the magnetic field
of

B̄med = 30
(

nH

103 cm−3

)1/2 (
σnt

1 km s−1

)
μG (nH � 2 × 103 cm−3). (21)

The value of the density in this relation is NH/(4R/3), where R is the mean projected
radius. Projection effects could cause the actual density to differ from this, but the
change is not large for triaxial clouds of the type considered by Basu (2000).

As yet, observations of the mass-to-flux ratio on large scales, up to that of GMCs,
are not available. The definition of μ� implies

B̄ = G1/2�

μ�c�
= 3.80

(
NH,21

μ�

)
μG = 7.60

(
AV

δgrμ�

)
μG, (22)

where the numerical evaluations are based on c� = 1/2π , the visual extinction
is AV = NHδgr/(2 × 1021 cm−2), and δgr is the dust-to-gas ratio normalized to
the local interstellar value. Typical Galactic GMCs have NH = 1.5 × 1022 cm−2

(see Section 3.1), corresponding to critical magnetic field strength (i.e., such that
μ� = 1) of Bcr = 57 μG for the large-scale mean field. In regions with densities
nH ≈ 2 × 103 cm−3, the lowest for which molecular-line Zeeman observations are
available, Crutcher (1999) reports line-of-sight magnetic field strengths of ≤21 μG.
Allowing for an increase of up to a factor of two for projection effects, and for the fact
that the mean magnetic field strength will not increase as the density is reduced by a
factor of ∼10 to reach the volume-averaged value in GMCs, we infer that GMCs are
supercritical. GMC magnetic fields are not too weak, however: 450 μm polarimetry
of four GMCs shows that the orientation of the field appears to be preserved during
the formation of the GMCs and that the energy in the field is comparable to the
turbulent energy (Li et al. 2006).

Theoretical arguments are consistent with the empirical evidence that GMCs as
well as their subparts are supercritical with respect to their mean magnetic fields.
Models of self-gravitating, isothermal, magnetized clouds show that large pressure
contrasts between the center of the cloud and the edge occur only when the cloud is
near its critical mass; furthermore, if the kinetic energy is comparable to the magnetic
energy, then large pressure contrasts occur only for M > M�. Extending the earlier
work of Mouschovias (1976), Tomisaka, Ikeuchi & Nakamura (1988) found that for
the cases they considered with 8π P/B2 = 1, the central pressure significantly exceeds
the surface pressure only when M is quite close to Mcr, and that in these cases the cloud
is magnetically supercritical, M > M�. Using this work, McKee (1989) showed that
the critical mass is Mcr � M�+MBE for quiescent clouds; he assumed that this relation
applies to turbulent clouds as well, with σth replaced by the total velocity dispersion
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σ , but the validity of this assumption remains to be demonstrated. Because, on large
scales, the turbulent magnetic energy is likely comparable to or larger than the mean
magnetic energy, and the kinetic energy is at least as large as the magnetic energy (and
much greater than the thermal energy), then clouds with αvir ∼ 1 have M � 2M�.
Nakano (1998) has given a similar, more precise argument that the smaller-scale
and less-turbulent cores that form stars are also magnetically supercritical. In both
cases, the basic argument is that if gravity is strong enough to overcome both kinetic
energy (turbulent plus thermal) and magnetic fields (turbulent and ordered) in order
to form a bound object, then it is certainly strong compared to the support from
mean magnetic fields alone. Note that this argument does not apply to objects that
are not bound, but instead are the result of colliding flows (Section 3.2.1). It is of
great importance to determine observationally the relative importance of magnetic
fields and gravity in the large-scale structure of molecular clouds.

Most detailed modeling of magnetic fields in nonturbulent clouds is based on
the assumption that the field is poloidal (e.g., Mouschovias 1987); such fields always
tend to support clouds against gravity. However, the toroidal component of a he-
lical field exerts a confining force, and can lead to prolate clouds (Tomisaka 1991,
Fiege & Pudritz 2000). From a virial analysis of several filamentary clouds, Fiege &
Pudritz (2000) find that the self-gravity and the pressure of the ambient medium are
inadequate to account for the high mean pressures that are observed in the clouds;
they conclude that the data can be explained if these clouds are confined by helical
fields. The principal uncertainty in this analysis is that in most cases there is no direct
measurement of the ambient pressure.

There are two mechanisms for increasing the mass-to-flux ratio, flows along mag-
netic fields and ambipolar diffusion. In the part of a bound molecular cloud that is
shielded from the interstellar radiation field so that the ionization is caused by cosmic
rays, the ambipolar diffusion time is about 10 times the free-fall time in the absence
of turbulence (Mouschovias 1987) and several times faster than this in the pres-
ence of turbulence (Fatuzzo & Adams 2002, Zweibel 2002, Nakamura & Li 2005).
However, most of the mass of a GMC is ionized primarily by far ultraviolet (FUV)
radiation from stars (McKee 1989), and in this gas the ambipolar diffusion time is
much longer. GMCs are very porous, and as a result an even larger fraction of the
volume of the cloud is likely to be ionized above the level set by cosmic rays. It fol-
lows that flux-freezing is a good approximation on large scales in molecular clouds.
Mestel (1985) introduced the concept of the accumulation length, L0, the size of
the region required to achieve a given mass-to-flux ratio when flux-freezing applies,
μ� = M/M� ∝ n0 L0/B0. In our notation this yields

L0 =
(

c� B0

μHG1/2n0

)
μ� = 85

(
μ� B0,−6

n0

)
pc, (23)

where B0,−6 ≡ B0/(1 μG). Using n0 ∼ 1 cm−3 for the mean density in the diffuse
ISM (because GMC columns are much greater than those of individual CNM clouds)
and B0,−6 ∼ 6 for the mean field in the solar vicinity (because the mean field should
be similar to the CNM field—Piontek & Ostriker 2005) gives a large value for this
length, ∼1 kpc if GMCs have μ� ∼ 2. In fact, as we discuss in Section 3.2.1, GMC
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formation from large-scale self-gravitating galactic disk instabilities indeed involves
very large accumulation lengths and yields supercritical clouds.

As discussed above, current observations do not determine whether ambipolar dif-
fusion is necessary for the initiation of gravitational collapse. Theoretical simulations
suggest that in the absence of ambipolar diffusion, star formation is strongly sup-
pressed in magnetically subcritical regions, even if μ� is only slightly less than unity
(Krasnopolsky & Gammie 2005). However, similar simulations show that magnetic
fields have a relatively small effect in slowing the rate of star formation if the gas is su-
percritical (Ostriker, Gammie & Stone 1999; Heitsch, Mac Low & Klessen 2001; Li
et al. 2004; Vázquez-Semadeni, Kim & Ballesteros-Paredes 2005; Vázquez-Semadeni
et al. 2005; Nakamura & Li 2005). The primary effect of magnetic fields may be to
shift the initial collapse to higher masses. Simulations with ambipolar diffusion in
weakly ionized plasmas are very challenging. In the strong-coupling approximation,
in which the ions are not treated as a separate fluid but the field diffuses relative to
the flow, explicit MHD codes have time steps ∝ �x2, which is prohibitive at high
resolution (Mac Low et al. 1995). If the ions are treated as a separate fluid, explicit
codes must resolve Alfvén waves in the ions as well as Alfvén waves in the coupled
ion-neutral fluid. For ionizations �10−6, the Alfvén velocity in the ions can exceed
103 km s−1, leading to very small time steps. A potential way around this problem is
to increase the ion mass and decrease the ion-neutral coupling constant so that the
momentum exchange rate between the ions and neutrals is unchanged (Li, McKee &
Klein et al. 2006; Oishi & Mac Low 2006).

One regime in which ambipolar diffusion (or the lack of it) could have a strong
effect on the star-formation rate (SFR) is in the outer layers of GMCs, which are domi-
nated by FUV ionization. FUV photoionization slows ambipolar diffusion, and there-
fore star formation, when it dominates cosmic-ray ionization, which occurs for visual
extinctions AV � 4 mag from the surface or ∼8 mag along a line of sight through the
cloud (McKee 1989). Suppression of star formation in the outer layers of GMCs has
been confirmed in the L1630 region of Orion (Li, Evans & Lada 1997) and in Taurus
(Onishi et al. 1998). To the extent that ambipolar diffusion is essential for forming
molecular cores, the absence or near absence of submillimeter cores in the outer lay-
ers of Ophiuchus ( Johnstone, Di Francesco & Kirk 2004) and Perseus (Hatchell et al.
2005, Enoch et al. 2006) is qualitatively consistent with this prediction. On the other
hand, Strom, Strom & Merrill (1993) find that there is a substantial distributed pop-
ulation of young stars in L1641, although this population is relatively old (5–7 Myr).

2.3.1. Ionization. The chemistry of molecular clouds is a full subject in its own right.
Here we summarize several developments that affect the ionization, which governs the
coupling between the gas and the magnetic field. (a) Photodissociation regions (PDRs)
are regions of the ISM that are predominantly neutral and in which the chemistry
and heating are predominantly due to FUV radiation (see the review by Hollenbach
& Tielens 1999). Most of the nonstellar IR radiation and most of the millimeter and
submillimeter CO emission in galaxies originates in PDRs. In the typical interstellar
radiation field, photoionization dominates ionization by cosmic rays for extinctions
AV < 4 mag, which includes most of the molecular gas in the Galaxy (McKee 1989).
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(b) PAHs, which contain a few percent of the carbon atoms, often dominate the mid-IR
spectrum of star-forming regions and galaxies. It is frequently assumed that PAHs
have a low abundance in molecular clouds owing to accretion onto dust grains; if this
is not the case, they can dominate the ionization balance, because electrons react with
them very rapidly (Lepp et al. 1988). (c) H+

3 is a critical ion in initiating ion-molecule
reactions in molecular clouds. For many years, the rate of dissociative recombination,
H+

3 + e → H2 + H or H + H + H, was uncertain, but careful laboratory experiments
have shown that the rate coefficient for this reaction is large: a fit to the results of
McCall et al. (2003) gives αd (H+

3 ) = 4.0 × 10−7(T/10 K)−0.52 cm3 s−1. In order to
maintain the observed abundance of H+

3 in the face of this high recombination rate,
these authors inferred a very high cosmic-ray ionization rate, ζCR = 6 × 10−16 s−1 per
H atom (including secondary ionizations), in a diffuse molecular cloud along the line
of sight to ζ Per. Models involving two gas phases give somewhat lower values of ζCR

(e.g., Dalgarno 2006), but the correct value is now quite uncertain. In dense clouds,
Dalgarno (2006) concludes that the ionization rate is ζCR � 2.5 − 5 × 10−17 s−1.
(d ) Recent observations have established that carbon-bearing molecules freeze out
onto dust grains at high densities (nH ∼ 105 cm−3) in low-mass cores, with nitrogen-
bearing molecules freezing out at higher densities (Di Francesco et al. 2007). This
affects the ionization, as it removes abundant ions such as HCO+ from the gas.

Although the chemistry determining the ionization in molecular clouds is com-
plex, simple analytic estimates are possible. In the outer layers of PDRs, carbon is
photoionized so that ne � n (C). In regions ionized by cosmic rays, the degree of
ionization is given by

xe ≡ ne

nH
�

(
ζCR

αnH

)1/2

(24)

if the ionization is dominated by molecular ions (including PAHs), where α is the
relevant recombination rate in the chemistry that determines the ionization fraction.
If PAHs are depleted, then α � 10−6 cm3 s−1 is the dissociative recombination rate for
heavy molecules provided the density is high enough that H+

3 is destroyed primarily by
reactions with such molecules; for lower densities, where the ionization is dominated
by H+

3 , one has α = αd (H+
3 ). If PAHs are sufficiently abundant that most of the

electrons are attached to PAHs, then α � 3 × 10−7 cm3 s−1 (Tielens 2005) and ne

in Equation 24 includes the electrons attached to PAHs. Metal ions can be readily
included in the analytic theory (McKee 1989), but they do not appear to be important
in dense cores (Maret, Bergin & Lada 2006). Equation 24 is consistent with the results
of Padoan et al. (2004) at late times and at high densities for α = αd (HCO+), which
they took to be 2.5 × 10−6 cm3 s−1.

3. MACROPHYSICS OF STAR FORMATION

3.1. Physical State of Giant Molecular Clouds, Clumps, and Cores

The molecular gas out of which stars form is found in molecular clouds, which occupy
a small fraction of the volume of the ISM but, inside the solar circle, comprise a
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significant fraction of the mass. The terminology for the structure of molecular clouds
is not fixed; here we follow the discussion in Williams, Blitz & McKee (2000). GMCs
have masses in excess of 104 M� and contain most of the molecular mass. Molecular
clouds have a hierarchical structure that extends from the scale of the cloud down
to the thermal Jeans mass in the case of gravitationally bound clouds, and down to
much smaller masses for unbound structures (Langer et al. 1995, Heithausen et al.
1998). Overdense regions (at a range of scales) within GMCs are termed clumps.
Star-forming clumps are the massive clumps out of which stellar clusters form, and
they are generally gravitationally bound. Cores are the regions out of which individual
stars (or small multiple systems like binaries) form, and are necessarily gravitationally
bound. As remarked above, this terminology is not universal; e.g., Ward-Thompson
et al. (2007) use “prestellar core” to refer to a core, and “cluster-forming core” to
refer to a star-forming clump.

A molecular cloud is surrounded by a layer of atomic gas that shields the molecules
from the interstellar UV radiation field; in the solar vicinity, this layer is observed
to have a column density NH � 2 × 1020 cm−2, corresponding to a visual extinc-
tion AV = 0.1 mag (Bohlin, Savage & Drake 1978). A larger column density,
NH � 1.4 × 1021 cm−2, is required for CO to form (van Dishoeck & Black 1988). The
layer of gas in which the hydrogen is molecular but the carbon is atomic is difficult
to observe, and has been termed “dark gas” (Grenier, Casandjian & Terrier 2005).

The mass of a molecular cloud is generally inferred from its luminosity in the
J = 1 − 0 line of 12CO or 13CO. Because 12CO is optically thick, estimating the
column density of H2 molecules from the 12CO line intensity ICO (in units of K
km s−1) requires multiplication by an “X-factor,” an appropriate name because it
is not well understood theoretically; this is defined as X ≡ N(H2)/ICO. Various
methods have been used to infer the value of X in the Galaxy: In one method, ob-
servations of γ rays emitted by cosmic rays interacting with the ISM give the total
amount of interstellar matter; the mass of molecular gas follows by subtracting the
neutral atomic hydrogen (HI) contribution. With this technique, Strong & Mattox
(1996) infer X = 1.9 × 1020 cm−2(K km s−1)−1. In another method, subtracting the
HI-associated dust emission from the total observed dust emission in the IR gives
a local value X = 1.8 × 1020 cm−2(K km s−1)−1 (Dame, Hartmann & Thaddeus
2001). Note that both of these methods account for all the molecular hydrogen gas,
including the dark gas. Allowing for the atomic shielding layer around a molecular
cloud (but not the dark-gas layer), Elmegreen (1989) predicted X ∝ (G0/Z)3/8/Tb ,
where G0 is proportional to the intensity of FUV radiation that can photodissociate
H2, Z is the metallicity, and Tb is the brightness temperature of the line. Maloney
& Black (1988) concluded that Tb should be substantially reduced in regions of low
metallicity. Observing the 13CO line is advantageous in that it is optically thin in all
but the high-density cores. Conversion from 13CO intensity to column density in-
volves an assumption of LTE (using temperatures derived from 12CO), and a fixed H2

to 13CO abundance. Because 13CO may be subthermally excited in diffuse regions,
however, column densities there will be underestimated. Near-IR extinction map-
ping (Lada, Alves & Lombardi 2007) offers the prospect of obtaining more accurate
masses, at least for nearby molecular clouds.
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The observed mass distribution of GMCs is a power-law with a relatively sharp
cutoff. Let dNc (M) be the number of GMCs with masses in the range M to M+ d M.
Observations of GMCs inside the solar circle (but excluding the Galactic Center) are
consistent with the mass distribution of the form (Williams & McKee 1997)

dNc

d ln M
= Nc u

(
Mu

M

)α

(M ≤ Mu), (25)

with no GMCs above Mu . Here Nc u/α is equal to the number of clouds elimi-
nated from the distribution by the cutoff at Mu . With Nc u = 63, α = 0.6, and
Mu = 6 × 106 M�, this cloud mass distribution accounts for all the molecular mass
observed inside the solar circle excluding the Galactic Center. An independent analy-
sis by Rosolowsky (2005) finds a similar slope (α = 0.5±0.1), but a somewhat smaller
maximum mass (Mu = 3 × 106 M�, although this does not include the several most
massive clouds). These results are necessarily approximate owing to the difficulties
in identifying clouds from position-velocity data in the inner Galaxy—in particular,
blending of clouds along the line of sight is likely to make the true value of the slope
steeper (Rosolowsky 2005). However, the main implications are likely to be robust.
First, most of the mass in GMCs is in large clouds—a significant fraction is in clouds
with M > 106 M�, and >80% is in clouds with M > 105 M� (see also Stark & Lee
2006). And second, because Nc u 
 1, the upper limit of the mass distribution, Mu ,
has a physical significance (McKee & Williams 1997). If there were no cutoff to the
distribution, one would expect about 100 GMCs more massive than 6 × 106 M� in
the Galaxy, whereas there are none. This upper mass limit may be set by the pro-
cesses that form GMCs out of diffuse gas (see Section 3.2.1). It should be noted
that the GMCs are embedded in more massive HI superclouds (sometimes encom-
passing multiple GMCs), which also appear to be gravitationally bound (Elmegreen
& Elmegreen 1987). In other Local Group galaxies, GMC mass distributions have
similar power-laws to that in the Milky Way, with the exception of M33, which has
dNc /d ln M ∝ M−1.5 (Blitz et al. 2007). In more distant galaxies, giant molecular as-
sociations (GMAs) with masses up to ∼107 M� have been observed (Vogel, Kulkarni
& Scoville 1988; Sakamoto et al. 1999).

3.1.1. Dynamics of giant molecular clouds. In a seminal paper, Larson (1981)
summarized some of the key dynamical features of GMCs in what are often referred
to as Larson’s laws. The first result is that GMCs obey a linewidth-size relation:
GMCs are supersonically turbulent with velocity dispersions that increase as a power
of the size. For GMCs in the first Galactic quadrant, almost all of which are inside
the solar circle, Solomon et al. (1987) found

σ = (0.72 ± 0.07)R0.5±0.05
pc km s−1

, (26)

where Rpc ≡ R/(1 pc). (Note that the coefficient in this relation is based on a distance
to the Galactic Center of 10 kpc; we have not adjusted this value for a more accurate
distance because the change is within the errors.) Heyer & Brunt (2004) find that this
cloud-to-cloud relation extends to the structure functions within individual GMCs as
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well (see Equation 6 in Section 2.1.5), and argue that this demonstrates the universality
of the turbulence in moderate-density gas in molecular clouds (see below).

Larson’s second law is that GMCs are gravitationally bound (αvir � 1; see Equation
11). (It should be noted that though molecular gas is generally bound in the Galaxy,
different physical conditions can lead to substantial amounts of unbound molecular
gas or bound atomic gas—Elmegreen 1993b.) Solomon et al. (1987) determined the
masses of clouds in their sample using the virial theorem with αvir = 1.1, and then
determined the X-factor. Including He and adjusting the distance to the Galactic
Center to 8.5 kpc from 10 kpc, their value of the X-factor corresponding to a typical
GMC with a mass of 106 M� (see above) is 1.9 × 1020 cm−2(K km s−1)−1, the same as
the value determined from γ -ray observations; hence, the GMCs in their sample are
gravitationally bound on average. (Note that this argument is approximate because
the γ -ray value for the X-factor includes the dark gas, whereas the value from the
virial theorem includes only part of this gas, depending on the morphology of the
GMC.) Observations of 13CO, which is optically thin, permit a direct measurement
of the mass, provided the abundance is known. Such observations of a sample of
GMCs in the outer Galaxy, where blending of different clouds along the line of
sight is negligible, confirm that molecular clouds with M � 104 M� (i.e., GMCs) are
bound (Heyer, Carpenter & Snell 2001). Lower mass clouds become progressively
less bound (see also Maloney 1990), and unbound molecular clouds are for many
purposes equivalent to nonself-gravitating clumps within larger GMCs. Based on
observations in 13CO and other species that are believed to be optically thin, clump
mass functions within GMCs follow dN /d ln M ∝ M−αclump with αclump = 0.3 − 0.7
(Blitz 1993; Williams, de Geus & Blitz 1994). The slope of the clump mass function
is similar to that for GMCs as a whole (see Equation 25), possibly because both are
determined by turbulent processes within larger, gravitationally bound systems.

Larson’s third law is that GMCs all have similar column densities. For the Solomon
et al. (1987) sample, the mean column density is N̄H = (1.5 ± 0.3) × 1022 R0.0±0.1

pc

cm−2; this corresponds to an extinction of AV = 7.5 mag with the local dust-to-
gas ratio. The corresponding mean surface density of GMCs is �̄ = 170 M� pc−2.
However, GMCs in the outer Galaxy are observed to have smaller column densities
(Heyer, Carpenter & Snell 2001), in part because of the greater sensitivity of these
observations.

As Larson pointed out, these three relations are not independent; any two of them
imply the third. Indeed, if we express the linewidth-size relation as σ ≡ σpc R1/2

pc , then

αvir =
(

5
π pc

)
σ 2

pc

G�
= 3.7

(
σpc

1 km s−1

)2 (
100 M� pc−2

�

)
(27)

relates the three scaling laws. Observations supporting a universal turbulence law
(Equation 6) in the Galaxy, and thus small differences in σpc between inner- and
outer-Galaxy GMCs (Heyer & Brunt 2004; Heyer, Williams & Brunt 2006) im-
ply that the value of � is about the same for all GMCs with αvir ∼ 1, regardless
of Galactic location. Observational confirmation of this conclusion would be valu-
able. Provided Larson’s Laws apply, the mean kinetic pressure within GMCs is
independent of mass and size, and is given by P̄kin = ρ̄σ 2 = 3�σ 2

pc/(4 pc). For
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inner-Galaxy GMCs, this is P̄kin/kB ≈ 3 × 105 K cm−3. These results can also be ex-
pressed in terms of the sonic length �s (see Section 2.1.3), because σpc = c s (2/3�s ,pc)1/2

if σ ≈ σnt 
 c s and � = 2R. Gravitationally bound objects (αvir ∼ 1) that obey
a linewidth-size relation with an exponent �1/2 necessarily have surface densities
� = (10/3παvir)c 2

s /(G�s ) ∼ c 2
s /(G�s ). The small observed variation in � for the set

of inner-Galaxy GMCs is then equivalent to a small variation in �s in those clouds
(because c s is observed to be about constant). In terms of �s , the mean kinetic pressure
in GMCs is P̄ = �c 2

s /(2�s ).
Do Larson’s laws apply in other galaxies? Blitz et al. (2007) summarize observations

of GMCs in galaxies in the Local Group, in which the metallicity varies over the
range (0.1 − 1) solar. They find that the GMCs in most of these galaxies would have
luminous masses within a factor two of their virial masses if X = 4 × 1020 cm−2

(K km s−1)−1; alternatively, if X has the same value as in the Galaxy, then the GMCs
are only marginally bound (αvir � 2). They conclude that metallicity does not have
a significant effect on X because the ratio of the virial mass to the CO luminosity is
constant in M33, despite a factor of 10 variation in metallicity. (Note, however, that
Elmegreen 1989 argues that X depends on the ratio of the metallicity to the intensity
of the FUV radiation field, which is not addressed by these results.) Although there
is insufficient dynamic range for clear evidence of a relationship between linewidth
and size based on current observations, the data are consistent with σ ∝ R1/2 but
with values of σpc (and therefore �s ) that vary from galaxy to galaxy. Blitz et al. (2007)
also find that GMC surface densities have a relatively small range within any given
Local Group galaxy, and vary from ∼50 M� pc−2 for the SMC (L. Blitz, personal
communication) to >100 M� pc−2 for M33.

There are currently two main conceptual frameworks for interpreting the data
on GMC properties. One conception of GMCs is that they are dynamic, transient
entities in which the turbulence is driven by large-scale colliding gas flows that create
the cloud (e.g., Heitsch et al. 2005, Vázquez-Semadeni et al. 2006, Ballesteros-Paredes
et al. 2007). This picture naturally explains why GMCs are turbulent (at least in the
initial stages), and why the linewidth-size relation within clouds has an exponent of
1/2—simply due to the scaling properties of supersonic turbulence. However, it is
less obvious why αvir ∼ 1 and why � has a particular value, because small-scale dense
structures may form (and collapse) at stagnation points in a high-velocity compressive
flow before sufficient material has collected to create a large-scale GMC. Indeed,
based on simulations with a converging flow of ∼20 km s−2 with no stellar feedback,
Vázquez-Semadeni et al. (2007) find that star formation occurs when the column
density is NH ≈ 1021 cm−2, a factor of 10 below the mean observed value for GMCs.
They also find that αvir remains near unity after self-gravity becomes important,
although the kinetic energy is primarily due to the gravitational collapse of the cloud,
not to internal turbulence. Zuckerman & Palmer (1974) argued many years ago that
GMCs cannot be in a state of global collapse without leading to an unrealistically
high SFR. Proponents of the transient GMC picture counter by pointing out that
most of the gas in GMCs is unbound and never forms stars (e.g., Clark et al. 2005);
the global collapse is reversed by feedback from stars that form in the fraction of the
gas that is overdense and bound. Indeed, individual star formation proceeds more
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rapidly than global collapse in essentially all turbulent simulations (see also Section
3.2.2). However, dominance of global collapse and expansion over large-scale random
turbulent motions has not been confirmed from observations.

In the second conceptual framework, GMCs are formed by large-scale self-
gravitating instabilities (see Section 3.2.1), and the turbulence they contain is due to a
combination of inheritance from the diffuse ISM, conversion of gravitational energy
to turbulent energy during contraction, and energy injection from newly formed stars
(Section 3.2.2); the balance among these terms presumably shifts in time. In the work
of Chièze (1987), Elmegreen (1989), Maloney (1988), McKee & Holliman (1999),
and McKee (1999), GMCs are treated as quasi-equilibrium, self-gravitating objects,
so that the virial parameter is near-unity by definition. Whether or not equilibrium
holds, the virial parameter is initially of order unity in scenarios involving gravita-
tional instability because GMCs separate from the diffuse ISM as defined structures
when they become gravitationally bound. For a quasi-equilibrium, the mean surface
density is set by the pressure of the ambient ISM (see Section 2.2), which in turn
is just the weight of the overlying ISM. Elmegreen (1989) has given explicit expres-
sions for how the coefficient in the linewidth-size relation and the surface density
depend on the external pressure, finding results that are comparable with observed
values. In particular, the cloud surface density scales with the mean surrounding sur-
face density of the ISM. Even if GMCs are not equilibria, if they are formed due
to self-gravitating instabilities in spiral arms (e.g., Kim & Ostriker 2002, 2006) they
must initially have surface densities a factor of a few above the mean arm gas density,
consistent with observations. Provided that stellar feedback destroys clouds within a
few (large-scale) dynamical times before gravitational collapse accelerates, the mean
surface density would never greatly exceed the value at the time of formation. Simple
models of cloud evolution with stellar feedback (e.g., Krumholz, Matzner & McKee
2006) suggest that the scenario of slow evolution with αvir = 1 − 2 is self-consistent
and yields realistic star-formation efficiencies, but more complete studies are needed.

The two approaches to interpreting GMC dynamics correspond to two alter-
nate views on GMC lifetimes. Elmegreen (2000) argued that, over a wide range of
scales, star formation occurs in about 1 − 2 dynamical crossing times of the system,
tcross ≡ 2R/(

√
3σ ). Ballesteros-Paredes, Hartmann & Vázquez-Semadeni (1999) and

Hartmann, Ballesteros-Paredes & Bergin (2001) focused on the particular case of star
formation in Taurus, and argued that it occurred in about one dynamical time. The
alternate view is that GMCs are gravitationally bound and live at least 2 − 3, and
possibly more, crossing times, tcross � 10M1/4

6 Myr, where M6 ≡ M/(106 M�) and
a virial parameter αvir ∼ 1 − 2 is assumed (Palla & Stahler 2000; Huff & Stahler
2006; Tan, Krumholz & McKee 2006; note that the crossing time in the nearby star-
forming region in Taurus is ∼106 years, whereas in a large GMC it is ∼107 years).
However, GMCs (as opposed to structures within them) cannot be too close to being
equilibria, because they do not appear to have a systematic, global density stratifica-
tion, nor does the linewidth-size relation within individual clouds differ from that in
unstratified clouds. (Note that logatropic clouds can account for the observed rela-
tion δv ∝ �1/2 only if they are unbound—see Section 2.2). Estimates (empirical and
theoretical) of GMC lifetimes are discussed in Section 3.2.2. It should be borne in
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mind that the difference between the two scenarios is only a factor of ∼2−3 for GMC
lifetimes, which makes it difficult to obtain an unambiguous observational resolution
purely based on timescales. However, there are major physical distinctions between
the limiting cases of the scenarios that are under consideration—e.g., collapse trig-
gered in colliding flows versus a quasi-steady state supported by internally driven
turbulence. As complete numerical simulations are developed to flesh out the cur-
rent proposals, it will be possible to distinguish among them using detailed kinematic
observations.

3.1.2. Clumps and cores. GMCs are highly clumped, so that a typical molecule is
in a region with a density significantly greater than average. Liszt (1993) finds that
the typical density of molecular gas in the Galactic plane is nH � 3 × 103 cm−3;
Sanders et al. (1993) find a somewhat higher value from a multitransition study,
nH � (4 − 12) × 103 cm−3. However, the mean density in GMCs is considerably
less: because M ∝ n̄H R3 and N̄H ∝ n̄H R,

n̄H = 84

M1/2
6

(
N̄H

1.5 × 1022 cm−2

)3/2

cm−3, (28)

where we have normalized the column density to the typical value in the Solomon
et al. (1987) sample. The effective filling factor of this molecular gas is then

f ≡ n̄H

nH
= 0.028

M1/2
6

(
3000 cm−3

nH

) (
N̄H

1.5 × 1022 cm−2

)3/2

. (29)

Note that because f ≤ 1, clouds with M � 103 M� must have column densities less
than the Solomon et al. (1987) value if their typical density is ∼3000 cm−3. The small
filling factor of molecular gas in GMCs is expected in turbulent clouds (Section 2.1.4).
It should be noted that star-forming clumps are themselves clumpy, and contain the
cores that will evolve into stars.

The nature of the interclump medium is uncertain; it is not even known if it is
atomic or molecular (Williams, Blitz & McKee 2000). Hennebelle & Inutsuka (2006)
have suggested that the damping of hydromagnetic waves incident from the ambient
ISM could maintain an interclump medium made up of warm HI.

The physical conditions in clumps and cores have been thoroughly reviewed by
Di Francesco et al. (2007) and Ward-Thompson et al. (2007), and we address only
a few issues here. First, how well are Larson’s laws obeyed in clumps and cores?
Most 13CO clumps are unbound, and therefore do not obey Larson’s laws (e.g., Carr
1987); the mass distribution of such clumps can extend in an unbroken power-law
from several tens of solar masses down to Jupiter masses (Heithausen et al. 1998).
However, Bertoldi & McKee (1992) found that most of the mass in the clouds is
concentrated in the most massive clumps, and these appear to be gravitationally
bound. The virial parameter for the unbound clumps decreases with increasing mass,
in a manner similar to that observed for both the small molecular clouds and clumps
within GMCs in the outer Galaxy (Heyer, Carpenter & Snell 2001). They found that
the velocity dispersion in the unbound clumps is approximately independent of clump
mass (or, because the clump density is also about constant in each cloud, of clump
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size): the unbound clumps do not obey a linewidth-size relation. Heyer, Carpenter
& Snell (2001) find the same result for clumps in the outer Galaxy. By contrast,
Falgarone, Puget & Perault (1992) found that unbound clumps do obey a line width–
size relation, albeit with considerable scatter. Bertoldi & McKee (1992) showed that
the kinetic pressure in the unbound clumps in their study is comparable to that in
the host molecular cloud, which is P � G�2

MC (Equation 12). Further evidence on
whether clumps or cores are bound is imprinted in their shapes and density structure
and is discussed below.

It is difficult to determine from the data whether there is a linewidth-size rela-
tion within individual clumps and cores. For low-mass cores, Barranco & Goodman
(1998) (see also Goodman et al. 1998, Tafalla et al. 2004) found that the nonther-
mal linewidth decreases and then reaches a minimum plateau level at a finite impact
parameter ∼0.1 pc from the center of the core. Because of projection effects, how-
ever, it is not possible to determine whether the observed turbulence pervades the
whole volume interior to that radial impact parameter, or whether the turbulence is
primarily in a shell surrounding a more quiescent core; it is also possible that the
nonthermal linewidth is due to coherent oscillations of the cores (Keto et al. 2006).
A linewidth-size relation in the ensemble of different gravitationally bound clumps
and cores is expected only if they have similar surface densities (Equation 27). Jijina,
Myers & Adams (1999) carried out a comprehensive study of cores and star-forming
clumps (in our terminology; dense cores in theirs) observed in NH3 and found that
the objects with and without associated IRAS (Infrared Astronomical Satellite) sources
each obeyed a nonthermal linewidth-size relation with slopes of about 0.5 and 0.8,
respectively. When the sample was divided into objects associated with or without
clusters (defined as having at least 30 embedded YSOs), the cluster sample had a weak
correlation between linewidth and size with a slope of only about 0.2, whereas the
noncluster sample had a stronger correlation with a slope of about 0.6. However, as
remarked above, Heyer, Carpenter & Snell (2001) found no evidence for a linewidth-
size relation for small (<104 M�) molecular clouds in the outer Galaxy; furthermore,
they did not find evidence for a constant surface density at any mass. Plume et al.
(1997) observed a sample of clumps that are forming high-mass stars, and did not
find a linewidth-size relation.

The lack of an observed linewidth-size relation in observed unbound clumps within
a given cloud is at first puzzling, because defined volumes should sample from the
overall structure function of the GMC, which follows δv ∝ �0.5 (Section 2.1.5).
Analysis of turbulence simulations offers a resolution to this puzzle, suggesting that
many apparent clumps in moderate-density tracers such as 13CO are not, in fact,
single physical entities. Observationally, clumps are generally identified as connected
overdense peaks in position-velocity data cubes, with the line-of-sight velocity acting
as a surrogate for line-of-sight position. Analysis of simulations shows, however,
that many position-velocity clumps in fact consist of separate physical structures
superimposed on the sky; correspondingly, many physically coherent structures have
two or more separate components when observed in line-of-sight velocity (Pichardo
et al. 2000; Ostriker, Stone & Gammie 2001; Ballesteros-Paredes & Mac Low 2002).
Because low-contrast apparent clumps with any plane-of-sky size may sample from
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the velocity field along the whole line of sight, the linewidth varies only very weakly
with size. Because a fraction of the apparent clumps sample velocities from a range
of line-of-sight distances no larger than their transverse extent, however, Ostriker,
Stone & Gammie (2001) argued that the lower envelope of the clump linewidth-size
distribution should follow the scaling defined by the true 3D power spectrum; this is
generally consistent with observations (Stutzki & Guesten 1990; Williams, de Geus
& Blitz 1994).

What about Larson’s third law? Because gravitationally bound clumps have
P � G�2

bd clump, and the mean pressure in a stable, bound clump without an in-
ternal energy source cannot be much greater than the ambient pressure, it follows
that typically �bd clump is comparable to �GMC (e.g., McKee 1999). The high-mass,
star-forming clumps studied by Plume et al. (1997) violate this conclusion: They have
� ∼ 4800 M� pc−2 � 1 g cm−2 with considerable dispersion, which is much greater
than the typical GMC surface density ∼170 M� pc−2. There are several possible
explanations for this, and it is important to determine which is correct: Are these
clumps just the innermost, densest parts of much larger clumps? Do they have much
higher pressures than their surroundings but are avoiding gravitational collapse ow-
ing to energy injection from star formation? Or are they the result of a clump-clump
collision that produced unusually high pressures?

The density structure, velocity structure, and shape of cores offer potential means
for determining whether they are dynamic objects, with short lifetimes, or quasi-
equilibrium, gravitationally bound, objects. The observation of the Bok globule B68
in near-IR absorption revealed an angle-averaged density profile consistent with that
of a Bonnor-Ebert sphere to high accuracy (Alves, Lada & Lada 2001). Since then, a
number of other isolated globules and cores have been studied with the same tech-
nique and fit to Bonnor-Ebert profiles, showing that starless cases are usually close to
the critical limit, whereas cases with stars often match supercritical profiles (Teixeira,
Lada & Alves 2005; Kandori et al. 2005). Profiles of dense cores have also been
obtained using submillimeter dust emission (see Di Francesco et al. 2007). A recent
study by Kirk, Ward-Thompson & André (2005) found that bright starless cores have
density profiles consistent with supercritical Bonnor-Ebert spheres.

Consistency of density profiles with the Bonnor-Ebert profile does not, however,
necessarily imply that a core is bound. Analysis of dense concentrations that arise in
turbulence simulations show that Bonnor-Ebert profiles often provide a good fit to
these structures (provided they are averaged over angles), even when they are tran-
sients rather than true bound cores (Ballesteros-Paredes et al. 2007). Even if a cloud
with a Bonnor-Ebert profile is bound, however, it need not be in equilibrium: Myers
(2005) and Kandori et al. (2005) have shown that density profiles of collapsing cores
initiated from near-critical equilibria in fact follow the shapes of static supercritical
equilibria very closely. The reason for this is that initially these cores collapse slowly,
so that they are approximately in equilibrium; at later times, they evolve via “outside-
in’’ collapse to a state that is marginally Jeans unstable everywhere (ρ ∝ r−2—Section
4.1) except in a central core, which is similar to the density profile of a highly super-
critical Bonnor-Ebert sphere. Thus, not only the density structure but also the level
of the internal velocity dispersion and detailed shape of the line profiles must be used
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in order to distinguish between transient, truly equilibrium, and collapsing objects
(Keto & Field 2005).

Core shapes also provide information on whether cores are transient or are bound,
quasi-equilibrium objects. In the absence of a magnetic field, a quasi-equilibrium,
bound cloud is approximately spherical. If the cloud is threaded by a magnetic field
that tends to support the cloud against gravity, it will be oblate; if the field tends to
compress the cloud (as is possible for some helical fields–Fiege & Pudritz 2000), it will
be prolate. If one assumes axisymmetry, the distribution of observed axis ratios implies
dense cores are primarily prolate (Ryden 1996). However, this conclusion appears to
be an artifact of the assumption of axisymmetry: using the method of analysis for
triaxial clouds developed by Basu (2000) and Jones, Basu & Dubinski (2001), Jones
& Basu (2002) concluded that cores with sizes <1 pc are, in fact, oblate. Basu (2000)
showed that if the magnetic field is aligned with the minor axis, as in most quasi-
equilibrium models, the projection of the field on the plane of the sky will not generally
be aligned with the projection of the minor axis, and he argued that the limited
polarization data available are consistent with the theoretical expectation that the field
in the cloud is aligned with the minor axis of the cloud. Kerton et al. (2003) showed
that larger structures, extending up to GMCs, are intermediate between oblate and
prolate, and are clearly distinct from the smaller objects. This is consistent with the
analyses of clump shapes in turbulence simulations by Gammie et al. (2003), and Li
et al. (2004), who found that the majority of objects are triaxial. The data on cores and
small clumps are thus consistent with (but do not prove) that they are bound, quasi-
equilibrium objects. Large clumps and GMCs appear to be farther from equilibrium.

A key feature of the cores that form individual low-mass stars is that they have low
nonthermal velocities, whether these cores are found in isolation or clustered with
other cores (Di Francesco et al. 2007, Ward-Thompson et al. 2007). The mean 1D
velocity dispersion in starless cores based on the sample of Benson & Myers (1989) is
0.11 km s−1, such that the 3D velocity dispersion is approximately sonic. This places
constraints on theoretical models, and in particular may constrain the nature of tur-
bulent driving. Klessen et al. (2005) compared the results for cores identified in two
(unmagnetized) simulations with the same RMS Mach number ≈10, one driven on
large scales and the other driven on small scales; the time correlation of the driving
force is short for both cases. They found that only with large-scale driving is the mean
turbulence level within cores approximately sonic; in the small-scale driving case the
preponderance of cores are supersonic. Klessen et al. (2005) also found that the starless
cores in their large-scale-driving models are within a factor of a few of kinetic and grav-
itational energy equipartition. In the 2D MHD simulations of Nakamura & Li (2005)
that implement driving by instantaneous injection of radial wind momentum when
(low-mass) stars are formed, the dense cores that are identified also primarily have sub-
sonic internal motions. Importantly, both types of models show that dense, quiescent
cores can form in a turbulent environment; the slow, diffusive formation of quiescent
cores central to the older picture of star formation does not seem to be required.

What happens to dense cores once they form? Cores that have sufficient in-
ternal turbulence compared to their self-gravity will redisperse within a crossing
time. Cores that reach low enough turbulence and magnetization levels (allowing for
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dissipation) within a few local free-fall times will collapse if M > Mcr. Vázquez-
Semadeni et al. (2005) found that in globally supercritical 3D simulations with driven
turbulence, cores that collapse do so within 3–6 local free-fall times of their forma-
tion. Nakamura & Li (2005) found via 2D simulations including ambipolar diffusion
that even when the mass in the simulation volume is 20% less than critical, super-
critical cores can form; these then either collapse or redisperse within several local
free-fall times. In both cases (see also Krasnopolsky & Gammie 2005), only magnet-
ically supercritical cores collapse, as expected. Quiescent cores that are stable against
gravitational collapse could in principle survive for a long time (Lizano & Shu 1989),
undergoing oscillations in response to fluctuations in the ambient medium (Keto &
Field 2005, Keto et al. 2006). Because they are only lightly bound, however, such
failed cores can also be destroyed relatively easily by the larger-scale, more powerful
turbulence in the surrounding GMC. This process is clearly seen in numerical sim-
ulations; Vázquez-Semadeni et al. (2005) and Nakamura & Li (2005) found that the
bound cores that subsequently disperse do so in 1–6 × tff. Quiescent, magnetically
subcritical cores with thermal pressure ρcorec 2

s exceeding the mean turbulent pressure
ρ̄σ 2

nt (so that the core would collapse in the absence of magnetic support) cannot
easily be destroyed, however, and it is likely that they remain intact until they merge
with other cores to become supercritical. Simulations have not yet afforded sufficient
statistics to determine the mean time to collapse or dispersal as a function of core
properties and cloud turbulence level, or whether there is a threshold density above
which ultimate collapse is inevitable.

Observationally, core lifetimes can be estimated by using chemical clocks or from
statistical inference. The formation of complex molecules takes ∼105 years at typical
core densities, but this clock can be reset by events that bring fresh C and C+ into the
core, such as turbulence or outflows (Langer et al. 2000). A potentially more robust
clock is provided by observations of cold HI in cores: Goldsmith & Li (2005) infer
ages of 106.5−7 years for five dark clouds from the low observed values of the H0/H2

ratio. These age estimates would be reduced if clumping is significant and hence the
time-averaged molecule formation rate is accelerated, but, as in the case of complex
molecules, they would be increased if turbulent mixing were effective in bringing
in fresh atomic hydrogen. In simulations of molecule formation in a turbulent (and
therefore clumpy) medium, Glover & Mac Low (2007) find that H2 formation is
indeed accelerated when compared with the nonturbulent case, although the atomic
fractions they found are substantially greater than those observed by Goldsmith & Li
(2005). If confirmed, these ages, which are considerably greater than a free-fall time,
would suggest that these dark clouds are quasi-equilibrium structures.

Statistical studies of core lifetimes are based on comparing the number of starless
cores with the number of cores with embedded YSOs and the number of visible
T Tauri stars (TTSs). The ages of the cores (starless and with embedded YSOs) can
then be inferred from the ages of the T Tauri population, provided that most of the
observed starless cores will eventually become stars. The results of several such studies
have been summarized by Ward-Thompson et al. (2007), who conclude that lifetimes
are typically 3 − 5tff for starless cores with densities nH2 = 103.5 − 105.5 cm−3. This is
not consistent with dynamical collapse, nor is it consistent with a long period (>5tff) of
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ambipolar diffusion. It is consistent with the ambipolar diffusion in observed magnetic
fields (Section 2.3), which are approximately magnetically critical. Of course, cores
are created with a range of properties, and observational statistics are subject to
an evolutionary selection effect: Cores that are born or become supercritical evolve
rapidly into collapse, and are no longer counted among the starless population. Given
a population with a range of intrinsic lifetimes (but similar birth rates), the longest-
lived objects will be the best represented. The data rule out the possibility that most
cores are born very subcritical and lose their magnetic flux slowly, over ∼10tff.

The angular momentum of cores was initially regarded as a bottleneck for star for-
mation, but extensive theoretical analysis led to the conclusion that magnetic fields
would provide an effective braking mechanism (e.g., Mestel 1985; Mouschovias 1987).
Observations have established that the angular momentum, or equivalently, the ro-
tational energy, of cores is indeed small (e.g., Goodman et al. 1993; Jijina, Myers &
Adams 1999; Caselli et al. 2002; Pirogov et al. 2003). Goodman et al. (1993) charac-
terized the rotational energy by the parameter

βrot ≡ 1
3

(
v2

rot

GM/R

)
, (30)

which is the ratio of the rotational energy to the gravitational binding energy for a
uniformly rotating, constant density sphere; they found a median value βrot � 0.03.
The specific angular momenta j in this sample range from 6 × 1020 − 4 × 1022 cm2

s−1 and increase with size approximately as j ∝ R3/2. Interestingly enough, Burkert
& Bodenheimer (2000) showed that rotation arising from sampling turbulent fluctu-
ations with a Burgers power spectrum (and normalization matched to observations) is
adequate to account for the observations; in this picture, the role of magnetic braking
on small scales is unclear. (However, magnetic braking appears to be clearly signifi-
cant in regulating the spin of GMAs and hence GMCs—Rosolowsky et al. 2003; Kim,
Ostriker & Stone 2003). Because j ∝ vR and v ∝ R1/2 for large-scale turbulence,
the observed j ∝ R3/2 relation is what would be expected if core turbulence scales
similarly. Li et al. (2004) indeed find agreement with this scaling from cores identified
in their simulations. Gammie et al. (2003) and Jappsen et al. (2005) both find that the
mean specific angular momentum of cores in their models [using grid-based MHD
and (unmagnetized) SPH, respectively] is given in terms of the sound speed and large-
scale Jeans length by ∼0.1c s λJ; Jappsen et al. (2005) show that if the mean density is
adjusted so that core masses match those in observed regions, then the mean angular
momentum distributions match as well. For cores that collapse, Jappsen et al. (2005)
also found that the distributions of βrot are similar to those obtained by Goodman
et al. (1993).

3.2. Formation, Evolution, and Destruction of GMCs

3.2.1. Cloud formation. In principle, GMCs could form either by bottom-up or
by top-down processes. In bottom-up formation, successive inelastic collisions of
cold HI clouds would gradually increase the mean cloud size and mass until that of a
(self-gravitating) GMC is reached (e.g., Field & Saslaw 1965, Kwan 1979). The
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difficulty with this coagulation scenario, as was recognized early, is that it is very
slow; e.g., Kwan (1979) found that the time needed for the peak of the mass dis-
tribution to exceed 105 M� is more than 2 × 108 years. The binary collision time
for spherical clouds of radius Rcl and density ρcl is tcollis = (

√
π/3)(ρcl/ρ̄)(Rcl/σ ),

where ρ̄ is the density averaged over large scales and σ is the 1D velocity dispersion
over the mean intercloud separation (see Binney & Tremaine 1987, equation 8–122;
note that for considering agglomeration we neglect grazing collisions, choosing a
maximum impact parameter Rcl). Expressed in terms of the cloud gathering scale
Rgath ≡ [3Mcl/(4πρ̄)]1/3 = 190 pc(Mcl,6/n̄H)1/3 in the diffuse ISM, or in terms of the
cloud surface density �cl ≡ Mcl/(π R2

cl), the collision time is

tcollis =
√

π

3

(
ρcl

ρ̄

)2/3 Rgath

σ
=

√
π

4
�cl

ρ̄σ
. (31)

The mean intercloud separation is comparable to 2Rgath, which exceeds the atomic
disk scale height H ≈ 150 pc (Malhotra 1995) for Mcl,6 ≡ Mcl/106 M� � 0.04.
We can use Equation 31 to estimate the collision time if all the diffuse ISM gas
were apportioned into equal-mass clouds with equal surface density. Using σ ≈
7 km s−1 for the nonthermal velocity dispersion in the diffuse ISM at large (�H)
scales (Heiles & Troland 2003), �cl ≈ 170 M� pc−2 for the mean GMC column
(Solomon et al. 1987), and mean density of n̄H = 0.6 cm−3 typical of the diffuse ISM at
the Solar circle (Dickey & Lockman 1990), this yields a collision timescale >5 × 108

years. Gravitational focusing in principle decreases the cloud-cloud collision time,
but in practice this does not help in forming GMCs from atomic clouds because the
reduction factor for the collision time, [1 + πGRcl�cl/σ

2]−1, is near unity until the
clouds are quite massive (�105 M�). Even if the background density were arbitrarily
(and unrealistically) enhanced by a factor of 100 to approach ρcl, the total time of
40 Myr required to build clouds from 104 M� to 5 × 106 M� (by successive stages
of collisions) would still exceed the estimated GMC lifetimes. These lifetimes are
set by the time required to destroy clouds by a combination of photodissociation
and mechanical unbinding by expanding HII regions (see Section 3.2.2). Thus, if
coagulation were the only way to build GMCs, the process would be truncated by
destructive star formation before achieving the high GMC masses in which most
molecular mass is actually found.

Given the timescale problem and other difficulties of bottom-up GMC formation
(e.g., Blitz & Shu 1980), starting in the 1980s the focus shifted to top-down mech-
anisms involving large-scale instabilities in the diffuse ISM (e.g., Elmegreen 1979,
1995). The two basic physical processes that could trigger growth of massive GMCs
involve (a) differential vertical buoyancy of varying-density regions along magnetic
field lines parallel to the midplane, or (b) differential in-plane self-gravity of regions
with varying surface density. The first type of instability is generically termed a Parker
instability (Parker 1966). The second type of instability is generically a Jeans insta-
bility, although the simplest form of Jeans instability involving just self-gravity and
pressure cannot occur, owing to galactic (sheared) rotation (see Section 2.2). If the
background rotational shear is strong, as in the interarm regions of grand design spi-
rals or in flocculent galaxies, there is no true instability but instead a process known as
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swing amplification (Goldreich & Lynden-Bell 1965, Toomre 1981); the dimension-
less shear rate must be d ln �/d ln R � −0.3 for swing amplification to occur (Kim
& Ostriker 2001). If, however, the mean background dimensionless shear rate is low
(as in the inner parts of galaxies where rotation is nearly solid-body, or as in spiral
arms), another type of gravitational instability can develop provided magnetic fields
are present to transfer angular momentum out of growing condensations (Elmegreen
1987, Kim & Ostriker 2001); this is referred to as a magneto-Jeans instability (MJI).

The characteristic azimuthal spatial scale for Parker instabilities is λφ ≈ 4π H
(Shu 1974). Growth rates are ∝ vA/H, which tends to increase in spiral arms; thus
these regions have traditionally been considered most favorable for growth of Parker
modes (Mouschovias, Shu & Woodward 1974). Numerical simulations have shown,
however, that Parker instability is not on its own able to create structures resembling
GMCs, because the instability is self-limiting and saturates with only order-unity
surface density enhancement (Kim et al. 1998; Santillán et al. 2000; Kim, Ryu &
Jones 2001; Kim, Ostriker & Stone 2002). Spiral arms are also the most favorable
regions for self-gravitating instabilities (Elmegreen 1994), because the characteristic
(thin-disk) growth rate ∝ G�gal/c s is highest there. [Here, �gal is the mean gas surface
density averaged over large (greater than kpc) scales in the plane of the disk.] Because
the spatial wavelengths of Parker and MJI modes are similar, in principle growth
of the former could help trigger the latter within spiral arms (Elmegreen 1982a,b).
In fact, it appears that turbulence excited in spiral shocks, together with vertical
shear of the horizontal flow, may suppress growth of large-scale Parker modes in arm
regions (Kim & Ostriker 2006). Thus, although the Parker instability is important
in removing excess magnetic flux from the disk and in transporting cosmic rays (e.g.,
Hanasz & Lesch 2000), it may be of limited importance in the formation of GMCs.

Self-gravitating instabilities, unlike buoyancy instabilities, lead to ever-increasing
density contrast if other processes do not intervene. The same is true for the swing
amplifier if the (finite) growth is sufficient to precipitate gravitational runaway. The
notion that there should be a threshold for star formation depending on the Toomre
parameter,

Q ≡ κc s

πG�gal
= 1.4

(
c s

7.0 km s−1

) (
κ

36 km s−1 kpc−1

) (
�gal

13 M� pc−2

)−1

, (32)

is based on the idea that star-forming clouds can form by large-scale self-gravitating
collective effects only if Q is sufficiently low. Here κ2 ≡ R−3∂(�2 R4)/∂ R is the
squared epicyclic frequency, and c s is the mean sound speed of the gas. Numerical
simulations have been used to determine the nonlinear instability criterion, finding
that gravitationally bound clouds form provided Q < Qcrit ≈ 1.5 in model disks
that allow for realistic vertical thickness, turbulent magnetic fields, and a live stellar
component (Kim, Ostriker & Stone 2003; Li, Mac Low & Klessen 2005b; Kim &
Ostriker 2007; these models do not include global spiral structure in the gas imposed
by variations in the stellar gravitational potential—see below.) These results agree
with empirical findings for the mean value of Q at the star-formation threshold
radii in nearby galaxies (e.g., Quirk 1972, Kennicutt 1989, Martin & Kennicutt 2001).
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The masses of bound clouds formed via self-gravity in galactic disk models where the
background gas surface density is relatively uniform are typically a few to ten times
the 2D Jeans mass,

MJ,2D ≡ c 4
s

G2�gal
= 107 M�

(
c s

7 km s−1

)4 (
�gal

13 M� pc−2

)−1

, (33)

depending on the specific ingredients of the model (Kim, Ostriker & Stone 2002,
2003; Kim & Ostriker 2007).

Observations of external galaxies with prominent spiral structure show that most of
the molecular gas is concentrated in the spiral arms (e.g., Helfer et al. 2003, Engargiola
et al. 2003), and within the Milky Way the most massive clouds that contain most
of the mass and forming stars are strongly associated with spiral arms (Solomon,
Sanders & Rivolo 1985; Solomon & Rivolo 1989; Heyer & Terebey 1998; Stark &
Lee 2006). The observed relationship between GMCs and spiral structure suggests
that molecular clouds are preferentially born in the high density gas that makes up
the arms; this is consistent with theoretical expectations because growth rates for all
proposed mechanisms increase with the gas surface density. As noted above, collisional
coagulation is expected to be too slow in spiral arms; gravitational instabilities are,
however, faster (e.g., Elmegreen 1990). Taking the ratio of the collision rate t−1

collis
to the characteristic growth rate of the MJI, πG�gal/c s , and setting σ = c s and
H ≈ c 2

s /(πG�gal) (because gas gravity dominates stellar gravity in the arm), the result
is tMJI/tcollis = 2�gal/(

√
π�cl). Thus, the collision rate is lower than the self-gravity

contraction rate by roughly the surface filling factor of clouds in the arm, ∼0.2 − 0.5
if the arm surface density is enhanced by a factor of 3–6 above the mean value.

To obtain realistic estimates of the masses and other properties of clouds formed
via gravitational instabilities, it is necessary to include the effects of spiral structure in
detailed numerical models. Diffuse gas entering a spiral arm will in general undergo
a shock, significantly increasing the background density (e.g., Roberts 1969; Shu,
Milione & Roberts 1973); gas self-gravity enhances the maximum compression factor
and also tends to symmetrize the gas density profile across the arm (Lubow, Cowie &
Balbus 1986). In addition to strong variations in the gas surface density, spiral structure
induces corresponding local variations in the gas flow velocity (both compression
and streaming). Because the Jeans length is not small compared to the scale of these
variations, the background arm profile must be taken into account in studying growth
of self-gravitating condensations (Balbus 1988). Kim & Ostriker (2002) performed
2D MHD simulations of this process, showing that bound condensations develop
both within the spiral arms themselves and also downstream from the arms in trailing
gaseous spurs. Based on 3D local MHD simulations (Kim & Ostriker 2006) and
2D thick disk global simulations (Shetty & Ostriker 2006), bound gas condensations
formed in spiral arms (and arm spurs) have typical masses 1−3 × 107 M�. This value
is about 10 times the thin-disk 2D Jeans mass using the peak arm density in Equation
33, or comparable to the value of the thick disk Jeans mass MJ,thick = 2π c 2

s H/G,
which is obtained using the gravitational kernel �k = −2πG�k/(k + k2 H).

The masses of the bound structures formed via self-gravitating instabilities are
comparable to the upper end of the mass function of GMCs in the Milky Way (see
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Equation 25), allowing for HI envelopes; they are also comparable to the masses
of GMAs that have been observed in external spiral galaxies (e.g., Vogel, Kulkarni
& Scoville 1988; Aalto et al. 1999; Rand, Lord & Higdon 1999). In addition, the
morphology and spacing of spiral-arm spurs predicted to form via self-gravity effects
are consistent with structures that have been observed at a variety of wavelengths
(e.g., Elmegreen 1980; La Vigne, Vogel & Ostriker 2006). This spacing (of several
times the Jeans length in the arm, c 2

s /[G�gal,arm]) is similar to that of giant HII re-
gions arranged as “beads on a string” along spiral arms in many grand design spirals
(Elmegreen & Elmegreen 1983), and also similar to the spacings of giant IR clumps
observed with Spitzer along the spiral arms of interacting galaxies IC 2163 and NGC
2207 (Elmegreen et al. 2006). These giant IR clumps typically host a number of
individual (optically observed) HII regions associated with star clusters. Although
current millimeter-wavelength observations have insufficient resolution to identify
subcondensations within GMAs in external galaxies, it is expected that their internal
turbulence would create density substructure, just as the internal turbulence of GMCs
fragments them into clumps. Because the mean density within GMCs is comparable
to the typical density of cold clouds in the atomic medium, the pre-existing cloudy
structure of the diffuse ISM would contribute to, but not dominate, the internal
structure within GMCs. In this top-down picture, the more massive, self-gravitating,
substructures within GMAs (or analogous atomic superclouds) would then become
gravitationally bound GMCs.

Although large-scale self-gravitating instabilities appear necessary for forming
massive GMCs, and many low-mass GMCs may form via fragmentation of massive
GMCs or GMAs, it remains possible that a proportion of the low-mass GMCs form
through other mechanisms. Several recent studies have explored the possibility of
GMC assembly via colliding supersonic flows (e.g., Chernin, Efremov & Voinovich
1995; Vázquez-Semadeni, Passot & Pouquet 1995; Ballesteros-Paredes et al. 1999;
Heitsch et al. 2005; Vázquez-Semadeni et al. 2007); in this scenario the postshock
gas in the stagnation region (which in fact becomes turbulent) represents the nascent
GMC. For diffuse ISM gas at mean density ρ̄ with relative (converging) velocity vrel,
a total column of shocked gas �cl builds up over time

taccum = �cl

ρ̄vrel
= 1.6 × 107 years

(
NH

1021 cm−2

) (
nH

1 cm−3

)−1 (
vrel

20 km s−1

)−1

; (34)

note that modulo order-unity coefficients this time are the same as the result in
Equation 31, with the velocity dispersion of the cloud distribution replaced by the
relative velocity of the converging flow. Correlated flows can only be maintained up
to the flow timescale over the largest spatial scale of the turbulence, ∼2H ∼ 300 pc.
With vrel equal to the RMS relative velocity

√
6σ for a Gaussian with 1D velocity

dispersion σ ≈ 7 km s−1, this is ≈2 × 107 years, yielding a column ≈1021 cm−2 for
n̄ ≈ 1 cm−3 (note that the shock velocity is about vrel/2). If the interstellar magnetic
field does not limit the compression of the shocked gas (an artificial assumption, re-
quiring flow along field lines only), the postshock gas would have high enough density
for significant amounts of H2 to form within the overall accumulation time, and the
shielding from the diffuse UV is sufficient for CO to begin to form (Hartmann,
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Ballesteros-Paredes & Bergin 2001; Bergin et al. 2004). However, it should be noted
that for a shock velocity of 10 km s−1, corresponding to a relative velocity of 20 km
s−1, less than half the C is in CO after 108 years according to the 1D calculations
of Bergin et al. (2004). Turbulence-induced clumping can accelerate molecule for-
mation rates (Elmegreen 2000, Glover & Mac Low 2007), alleviating the timescale
problem. The molecule formation rate is proportional to the mass-weighted mean
density 〈n〉M, which is larger than the volume-weighted mean density n̄ ≡ 〈n〉V

in a turbulent flow (see Section 2.1.4). Because 〈n〉M/n̄ ∼ 10 for typical turbu-
lence levels in GMCs, this reduces the typical molecule formation time (Tielens
2005), ∼2 × 109 years(T/10 K)−1/2/〈n〉M, to 1–2 Myr. Even so, the discussion above
shows that the maximum column density produced in the colliding-flow scenario is
∼1021 cm−2, which is lower by an order of magnitude than the mean value of the
column of molecular gas in Milky Way GMCs; thus, this process can account for
at most a small fraction of the molecular gas mass in GMCs. Because gravitational
instabilities are suppressed by the high Q values in interarm regions, however, the
turbulent accumulation mechanism may be more important there. Potentially, this
may account for the observed difference (see above) between arm and interarm GMC
masses in the Milky Way, as well as for the very low surface densities �cl observed for
many of the outer-Galaxy molecular clouds (Heyer, Carpenter & Snell 2001).

Finally, we note that the dynamical considerations for gravitationally bound cloud
formation apply whether the diffuse gas is primarily atomic, as is the case in the Solar
Neighborhood and the outer portions of galaxies more generally, or whether the
diffuse gas is primarily molecular, as is true in the inner portions of many galaxies.
The time- and length scales involved depend on the effective pressure in the diffuse
gas, which includes thermal as well as turbulent and magnetic terms. If the diffuse
gas is primarily molecular (or cold atomic) by mass, then the mean turbulent and
Alfvén speeds will exceed the thermal speed in the dense gas. The thermal sound
speed c s in Equations 32 and 33 must then be replaced by an appropriately defined
c eff that incorporates the effects of turbulent kinetic and magnetic pressures (the form
of c eff would depend on the detailed multiphase structure of the gas). Similarly, the
characteristic timescale for self-gravitating cloud formation becomes

tJ,2D = c eff

G�gal
= 3 × 107 years

(
c eff

10 km s−1

) (
�gal

100 M� pc−2

)−1

. (35)

Turbulent velocity dispersions and magnetic field strengths are observed to be similar
in the cold and warm diffuse gas in the Solar Neighborhood (Heiles & Troland 2003,
2005), and both observations and simulations (Piontek & Ostriker 2005) show that
magnetic pressure is generally a factor of two larger than the thermal pressure.

The transition from having primarily atomic to primarily molecular gas typically
occurs where the total gas surface density �gal ≈ 12 M� pc−2 (Wong & Blitz 2002;
Blitz & Rosolowsky 2004) and where the mean midplane pressure is inferred to lie in
the range P/k = 104−105 K cm−3 (Blitz & Rosolowsky 2006). This transition occurs
due to a combination of increased self-shielding (hence a lower H2 dissociation rate)
as �gal increases, and increased density (hence increased H2 formation rate) as both
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�gal and the stellar surface density increase toward the center of a galaxy (Elmegreen
1993a, Blitz & Rosolowsky 2004).

3.2.2. Cloud evolution and destruction. GMCs are born in spiral arms down-
stream from the large-scale shock fronts and begin life in a very turbulent state. As
they contract under the influence of gravity, this turbulence decays, although the
rate of decay is slowed by compression. Mestel & Spitzer (1956) conjectured that
turbulence would decay in about a crossing time, and for that reason rejected tur-
bulence as a mechanism for supporting clouds against gravitational collapse (see also
Mouschovias, Tassis & Kunz 2006, who argue for magnetic support). Indeed, in sim-
ulations that do not include energy injection, the contraction eventually evolves into
free-fall collapse (cf. Vázquez-Semadeni et al. 2007, who simulated the formation
of molecular clouds in colliding flows, as discussed above), which is generally not
observed. Furthermore, as discussed in Section 3.1, turbulence in molecular clouds is
observed to be ubiquitous, suggesting that there is some mechanism acting to inject
turbulent energy into clouds. How important is energy injection to the structure and
evolution of molecular clouds?

Broadly speaking, there are two modes of energy injection, external and inter-
nal. External mechanisms tap the turbulence in the diffuse ISM, and because these
modes are large scale, external driving would tend to yield a power spectrum that
rises all the way to the largest scale in the GMC (see Section 2.1.1). In terms of
total amplitudes, however, external driving may have limited practical importance.
For example, though cloud-cloud collisions could drive turbulence, they may be too
rare to be important (except possibly within the denser portions of spiral arms; see
above). Magnetorotational instability (MRI) in the Galactic disk (Sellwood & Balbus
1999) connects GMCs to the diffuse ISM by threaded field lines and could therefore
help drive GMC turbulence, but it is difficult for this to be effective because GMCs
live for only a small fraction of a rotation period (see below), and because MRI is
modest compared to other kinetic turbulence drivers in inner galaxies (Piontek &
Ostriker 2005). Supernovae are the dominant energy source in most of the diffuse
ISM (Mac Low & Klessen 2004), with instabilities in spiral shocks making a signif-
icant contribution in spiral arm regions (Kim, Kim & Ostriker 2006). It is difficult,
however, for these (or other) processes to transmit energy from the diffuse ISM into
molecular clouds, which are much denser (Yorke et al. 1989). In fact, the density con-
trast between molecular clouds and the ambient medium means that energy tends to
be reflected from clouds rather than being transmitted into them [e.g., Elmegreen
(1999) and Heitsch & Burkert (2002) showed this for externally generated Alfvén
waves]. Thus, external energy is primarily limited to the turbulence GMCs inherit
from their formation stages.

Internal energy injection is caused by feedback from protostars and newly formed
stars. This mechanism is observed to be important, but it remains to be shown that it
can account for the ubiquity of turbulence given that star formation is intermittent in
both space and time. For example, Mooney & Solomon (1988) find that one-fourth
of a sample of inner-Galaxy GMCs show no evidence for the presence of O stars.
Norman & Silk (1980) were the first to analyze the importance of energy injection
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by stellar outflows. At the time of their work, bipolar outflows from protostars were
unknown, and they focused on winds from TTSs. They suggested that these winds
would blow cavities that would govern the structure of the clouds. Franco (1983) and
Franco & Cox (1983) considered rotationally driven winds from protostars as well as
T Tauri winds. They estimated the SFR required to keep swept-up shells colliding at
a rate high enough to keep the cloud turbulent, and showed that this was roughly con-
sistent with estimates of the Galactic SFR. The effect of stellar energy injection on the
surrounding molecular cloud can be described in terms of an energy equation for the
cloud (McKee 1989, 1999; Krumholz, Matzner & McKee 2006), de/dt = G−L, where
e is the energy per unit mass (including gravitational energy) andG andL represent en-
ergy gains and losses, respectively. The injection of energy into a cloud by stars is often
accompanied by mass loss from the cloud. Under the simplifying assumption that mass
lost from the cloud does not change the energy per unit mass, the specific energy losses
are due to the decay of MHD turbulence, which occurs at a rate (see Section 2.1.2)

L = 2.5
σ 3

R

(
2R
λ

)
. (36)

For a cloud of fixed size, the largest driving scale is λ � 2R; for a cloud undergoing
global expansion and contraction, the largest scale is λ � 4R. Next, consider the
energy gains. Because the shocks associated with the energy injection are radiative,
most of the energy injected by outflows is radiated away. The outflow energy
available to drive turbulence in the cloud is about (

√
3/2)pwσ , where pw = mwvw

is the momentum, mw the mass, and vw the velocity of the (proto)stellar outflow;
as a result, G = (

√
3/2)Ṁ∗(pwσ/m∗), where Ṁ∗ is the SFR and M is the cloud (or

clump) mass. Balancing the energy gains and losses, G = L, then gives the SFR
necessary to maintain the turbulent motions. Norman & Silk (1980), Franco (1983),
and McKee (1989) all estimated outflow momenta pw/m∗ � 50 − 70 km s−1 for
a typical stellar mass m∗ = 0.5 M� and found that the energy injection rate was
sufficient to support star-forming clouds against collapse. Li & Nakamura (2006)
and Nakamura & Li (2007) have carried out 3D MHD simulations of a forming
star cluster and found that the rate at which energy is input from protostellar winds
maintains the surrounding gas in approximate virial equilibrium. Matzner (2007)
has given a general discussion of turbulence driven by protostellar outflows. In
particular, he has shown on the basis of dimensional analysis that if outflows occur
at a rate per unit volume S and inject an average momentum I into a medium of
density ρ0, then on scales small compared to that at which the outflows overlap, the
linewidth-size relation is σ ∝ (SIr/ρ0)1/2, where the coefficient is of order unity.

There are both observational and theoretical caveats to this picture. Observation-
ally, Richer et al. (2000) cite pw/m∗ � 0.3vK , where vK is the Keplerian velocity at
the stellar surface; for vK � 200 km s−1, this is pw/m∗ � 60 km s−1, in agreement
with the values used in these models of energy injection and in agreement with both
X-wind and disk models of protostellar outflows. However, some recent observations
are in striking disagreement with these estimates: Based on observations of CO out-
flows by Bontemps et al. (1996), Walawender, Bally & Reipurth (2005) infer a much
lower average outflow momentum pw = 1.2 M� km s−1 (it should be noted, however,
that they infer a much larger momentum, pw = 18 M� km s−1, in a protostellar jet).
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Quillen et al. (2005) discovered a number of CO cavities in NGC 1333, which they
identified as fossil outflows with pw ∼ 1 M� km s−1; this estimate of the momentum
has been confirmed in numerical simulations of fossil outflows (Cunningham et al.
2006). Like Walawender, Bally & Reipurth, they concluded that these outflows could
support a region of active star formation like NGC 1333 against gravity, but outflows
could not support the larger Perseus cloud in which it is embedded. Clearly, more
observational work is needed to determine the rate of protostellar energy injection.

The theoretical caveat is that protostellar outflows are unlikely to be effective on
the scale of GMCs. Turbulent driving yields a flat power spectrum at scales larger than
the input scale of turbulence, regardless of magnetization (see Section 2.1.1). Because
the scale of protostellar jets and outflows is small compared to that of a GMC, driving
by low-mass stars is inconsistent with observed turbulence spectra that continue rising
up to scales of tens of parsecs (see Section 2.1.5); this effect is partly ameliorated by
the clustering of stars, because protostellar outflows from a cluster will extend to
larger scales than those from individual stars. Protostellar outflows remain a viable
energy source for clumps and cores within GMCs, however.

Massive stars can inject more momentum into GMCs through HII regions than
do the much more numerous low-mass stars through their outflows (Matzner 2002);
in addition, HII regions can inject energy on the scale of the GMC (Figure 2),
overcoming the limitation of protostellar outflows in this regard. The dominant
destruction mechanism for GMCs is via photoevaporation by blister HII regions (see
below). The momentum given to a GMC by the loss of a mass δM in a blister HII
region is about 2c IIδM, where c II � 10 km s−1 is the sound speed in the HII region (the
factor 2 represents the sum of the thermal and ram pressures in a blister HII region). If
the overall star-formation efficiency is εGMC, then a cloud of initial mass M will form
a mass of stars εGMCM and will lose a mass (1 − εGMC)M via photoevaporation. The
ratio of the momentum given to the cloud by HII regions to that given by protostellar
winds is then

pHII

pw

= (1 − εGMC)
εGMC

(
2c II

60 km s−1

)
� (1 − εGMC)

3εGMC
, (37)

where we used the value pw/m∗ � 60 km s−1 from Richer et al. (2000); if protostellar
momentum injection is less efficient than this, then HII regions are correspondingly
more important. (Note that if the cloud is disrupted before it is photoevaporated, as
can happen to smaller GMCs—see below—both the mass loss and the star formation
will be reduced, but pHII/pw will be relatively unaffected.) For GMCs, which have
star-formation efficiencies εGMC about a few percent, HII regions dominate the energy
injection by an order of magnitude. Large OB associations do not occur in small
molecular clouds, so photoevaporation is less important in such clouds; Matzner
(2002) estimates that protostellar outflows dominate the energy injection for clouds
with masses �4 × 104 M�.

The same HII regions that inject energy to support GMCs also destroy them.
Blitz & Shu (1980) estimated that HII regions would inject enough energy to unbind
a GMC in about 107 years. Using a simple analytic model for the evolution of blister
HII regions developed by Whitworth (1979) and confirmed in numerical simulations
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Figure 2
Effects of stellar feedback in a star-forming region, as seen in 3.6- to 8-μm bands with the
Spitzer Space Telescope. The image shows a 40-pc region of the Carina Nebula that is strongly
affected by a cluster containing 70 O stars just above the image. The region in the image
contains a few 105 M� of atomic gas, �105 M� of molecular gas, and ∼104 young stellar
objects. (NASA/JPL-CalTech/Nathan Smith.)

by Yorke et al. (1989), Williams & McKee (1997) concluded that an expanding HII
region would sweep up more mass than it ionized, so that a very large HII region
would disrupt the cloud before ionizing it. The condition for cloud disruption—that
the cloud be engulfed by the HII region—is difficult to meet for massive GMCs
(�106 M�), but relatively common for small GMCs. Indeed, the Orion molecular
cloud may well have been disrupted by previous generations of star formation. If one
assumes that the specific SFR is independent of GMC mass, then the observed rate
of star formation in the Galaxy implies that GMCs with masses ∼106 M� live for
about 30 Myr. Matzner (2002) assumed that the SFR in a cloud is self-regulating and
found that the specific SFR increases with cloud mass; as a result, he obtained smaller
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lifetimes for large GMCs, ∼20 Myr. Krumholz, Matzner & McKee (2006) obtained
a similar value with a more complete model for GMC evolution (see below).

Observational estimates of GMC lifetimes are difficult, although chemical clocks
can be used to measure the lifetime of clumps and cores within them (see Sec-
tion 3.1.2). For the Large Magellanic Cloud (LMC) and M33, Blitz et al. (2007)
discuss empirical measures of GMC lifetimes based on their spatial correlation with
HII regions and young clusters and associations. About 25% of the GMCs show no
evidence for high-mass star formation. This can be interpreted as a delay in the onset
of star formation due either to the effects of magnetic fields (McKee 1989, Tassis
& Mouschovias 2004), or to the time required to create cluster-forming clumps in
a turbulent cloud (from simulations this time is ∼1 − 3tff; e.g., Heitsch, Mac Low
& Klessen 2001; Ostriker, Stone & Gammie 2001; Krasnopolsky & Gammie 2005;
Vázquez-Semadeni et al. 2005); alternatively, if the SFR undergoes significant fluc-
tuations (e.g., Krumholz, Matzner & McKee 2006), it could simply represent a lull in
the SFR. In the LMC, about 60% of star clusters with ages <10 Myr are within 40 pc
of a GMC, whereas older clusters have no significant spatial correlation with GMCs;
Blitz et al. (2007) therefore infer that GMCs are destroyed within about 6 Myr of clus-
ter formation. There are also slightly more than twice as many clouds harboring small
HII regions as those containing large HII regions and clusters; they infer a lifetime
of 14 Myr for this stage. These statistics imply that the typical time interval between
when an HII region turns on and when the cloud is destroyed is ∼20 Myr. Including
the GMCs without high-mass stars, they infer a total GMC lifetime of 27 Myr. There
are several caveats to this analysis, however. First, the GMCs are identified only by
their CO emission; because CO is more readily destroyed in the low-metallicity envi-
ronment of the LMC than in the Galaxy (van Dishoeck & Black 1988), some GMCs
could have been missed, both in the early stages of evolution when the density is low
and in the late stage when the UV flux is high. Second, the mean mass of the clouds
increases in going from the starless sample and the small-HII sample to the cluster
sample; in fact, the two largest clouds are in the cluster sample, and overall just 10–
15% of massive (M > 105.5 M�) GMCs in the LMC and M33 lack (high-mass) star
formation. The naive interpretation of this secular trend is that massive GMCs (which
contain most of the molecular mass) have a more rapid onset of star formation than
do low-mass clouds, although this is not a unique explanation. Next, the associations
are unbound and dissolve rapidly; clusters dissolve more slowly, but one still cannot
assume that their relative numbers accurately track the relative lifetimes. It is not clear
how these latter two issues affect the analysis. Finally, large associations could displace
the clouds by the rocket effect rather than destroy them (a process termed cloud shuf-
fling by Elmegreen 1979). Nonetheless, observations of extragalactic GMCs offer the
most promising avenue for getting an observational handle on GMC evolution.

How do GMCs and the star-forming clumps within them evolve in the presence
of stellar and protostellar feedback? In the quasi-static approximation, a molecular
cloud will be in approximate virial equilibrium. Under the additional assumption
that the rate-limiting step in star formation is ambipolar diffusion, McKee (1989)
found that GMCs contract under the influence of their self-gravity until the contrac-
tion is halted by stellar feedback; the equilibrium is stable and the column density is
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AV � 4 − 8 mag, comparable to the observed value. Dropping the assumption of
quasi-static evolution and using the time-dependent virial theorem for a spherical,
homologous cloud, Matzner & McKee (1999) found that a star-forming clump under-
goes several bursts of star formation. Krumholz, Matzner & McKee (2006) extended
this work by using a theory for the SFR that is consistent with the Kennicutt-Schmidt
law (Krumholz & McKee 2005—see Section 3.4) and the full time-dependent virial
and energy equations to solve for the evolution of GMCs that are large enough
(�105 M�) that HII regions dominate the energy injection (Matzner 2002). Their
time-dependent integrations assume spherical, homologous evolution for each GMC,
and follow the formation and dynamical effects of many individual HII regions,
with stars selected from the IMF. Blister HII regions act to destroy the clouds,
but they also provide a confining pressure owing to the recoil associated with the
mass loss. The prinicipal results of the time-dependent models are (a) clouds live
for a few crossing times, ∼30 Myr for clouds with M � 106 M�, in agreement with
observational estimates; (b) clouds are close to equilibrium, with virial parameters
αvir � 1 − 2; (c) the column density of the clouds is NH � 1022 cm−2, in agreement
with observations; (d ) large clouds are destroyed by photoevaporation, but small
clouds (M � 2 × 105 M�) are disrupted before half their mass is photoionized; and
(e) GMCs convert ∼5 − 10% of their mass into stars before they are destroyed. HII
regions are unable to support GMCs with columns significantly greater than 1022

cm−2. Krumholz, Matzner & McKee (2006) conjecture that such clouds can occur in
regions in which the mean density is not much less than the density in the GMCs,
so that external driving is more efficient; such conditions could occur in starbursts.
Testing and extension of these cloud evolution/destruction models via full 3D nu-
merical simulations has not yet been attempted, but development and verification of
the necessary computational codes is well underway (Krumholz, Stone & Gardiner
2007, submitted; Mac Low et al. 2007, submitted; Mellema et al. 2006).

3.3. Core Mass Functions and the Initial Mass Function

3.3.1. Observations of the stellar initial mass function and the core mass
function. How is the distribution of stellar masses, or IMF, established? This is
one of most basic questions a complete theory of star formation must answer, but
also one of the most difficult. Current evidence suggests that the IMF is quite similar
in many different locations throughout the Milky Way, with the possible exception
of star clusters formed very near the Galactic Center (Scalo 1998b presents evi-
dence for significant variations in the IMF, but Elmegreen 1999 argues that much,
if not all, of this is consistent with the expected statistical variations). The stan-
dard IMF of Kroupa (2001) is a three-part power-law with breaks at 0.08 M� and
0.5 M�; i.e., dN∗/d ln m∗ ∝ m−α

∗ with α = 1.3 for 0.5 < m∗/M� < 50, α = 0.3 for
0.08 < m∗/M� < 0.5, and α = −0.7 for 0.01 < m∗/M� < 0.08. The slope of the IMF
at m∗ � M� was originally identified by Salpeter (1955), who found α = 1.35. Up to
∼1 M�, a log-normal functional form dN∗/d ln m∗ ∝ exp[−(ln m∗ − ln mc )2/(2σ 2)]
provides a smooth fit for the observed mass distribution (Miller & Scalo 1979), with
Chabrier (2005) finding that mc ≈ 0.2 M� and σ ≈ 0.55 apply both for individual
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stars in the disk and in young clusters; the system IMF (i.e., counting binaries as
single systems) has mc = 0.25 M�. Thus, the main properties of the IMF that any
theory must explain are (a) the Salpeter power-law slope at high mass, (b) the break
and turnover slightly below ∼1 M�, (c) the upper limit on stellar masses ∼ 150 M�
(Elmegreen 2000, Figer 2005, Oey & Clarke 2005), and (d ) the universality of these
features over a wide range of star-forming environments, apparently independent of
the mean density, turbulence level, magnetic field strength, and to large extent also
metallicity. Theory predicts that there should be a lower limit on (sub)stellar masses
(Low & Lynden-Bell 1976), but this has not been confirmed observationally.

Important additional information has been provided by recent millimeter and sub-
millimeter continuum surveys covering both cluster regions and larger areas in star-
forming systems (e.g., Motte, André & Neri 1998; Testi & Sargent 1998; Johnstone
et al. 2000, 2001; Motte et al. 2001; Beuther & Schilke 2004; Reid & Wilson 2005,
2006a; Stanke et al. 2006; Enoch et al. 2006; Nutter & Ward-Thompson 2007).
Within continuum maps, high-density concentrations representing (starless) cores
have been identified in sufficient numbers (and with sufficent resolution) that core
mass functions (CMFs) analogous to the IMF can be defined. Similar CMFs may
be derived using extinction data from well-sampled maps (Lada, Alves & Lombardi
2007) and molecular line maps in high-density tracers (Onishi et al. 2002). Studies
of the CMF using extinction maps are only just beginning, but they promise to be
very important given the lower systematic errors that are possible with this method.
An excellent recent summary of the statistical properties of observed cores is given
by Ward-Thompson et al. (2007).

The CMFs derived from many independent studies and methods are in good
agreement with each other, and are remarkably similar in functional form to the
stellar IMF. In particular, regardless of the total mass and size of the star-forming
cloud, and regardless of whether cores are well separated or highly clustered, the
high-end CMF (above 1 M�) is consistent with a power-law. Applying a uniform
analysis to data from 11 high- and low-mass star-forming regions, Reid & Wilson
(2006b) find α = 0.8−2.1, with the mean value α = 1.4. Observed CMFs for relatively
nearby clouds in the references cited above also show a peak and turnover at low mass
in the range of ∼ 0.2 − 1 M�. For distant clouds, the peak core mass is larger, but
lack of resolution and hence low-mass incompleteness affects these results. Observed
well-resolved CMF distributions are thus very similar to the stellar IMF, but shifted to
higher mass by a factor of a few. For CMFs derived from millimeter and submillimeter
observations, this factor involves some uncertainty associated with conversion from
dust emissivity to total mass. The CMF derived from extinction in the Pipe nebula,
which is not subject to this uncertainty, is shifted to higher masses by a factor of three
with respect to the standard stellar IMF (Alves, Lombardi & Lada 2007).

The mirroring of the universal IMF by the (possibly also universal) CMF suggests
that the stellar mass distribution is imposed early in the star-forming process. The
final mass of a star appears to be controlled by the available reservoir of the core from
which it forms, rather than, for example, being defined by a termination of accretion
owing to internal stellar processes. The shift of the observed CMF relative to the
IMF nevertheless implies that stellar feedback and other processes in the collapse
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or postcollapse stage affect stellar masses. Magnetized protostellar disk winds are
believed to reduce the stellar mass compared to core mass by a factor of a few (see
discussion in Section 4.2.6). In particular, Matzner & McKee (2000) predicted that the
efficiency of a single star-formation event in an individual core is εcore ≈ 0.25 − 0.7,
depending on the degree of flattening, which is comparable to the values implied by
the observations cited above. Because the efficiency is not sensitive to the parameters
involved, this implies a similar shift from CMF to IMF at all masses. Given the
uncertainty in the CMF normalization, the inefficiency of single star formation may
account for essentially the whole CMF→IMF shift. Some further fragmentation of
presently observed massive cores during their collapse may also occur, but provided
that the majority of the mass goes into a single object, this will leave the high-mass
end of the CMF relatively unchanged. Because the CMF is already dominated by
low-mass cores (by mass as well as by number), the addition of low-mass stars formed
as fragments from collapsing high-mass cores would negligibly affect the low-mass
end of the IMF.

Molecular line observations of low-mass cores, whether found in isolation (as in
Taurus) or in close proximity to other cores in a dense, cluster-forming clump (as in
ρ Oph), show that these cores have very low nonthermal internal velocities (André
et al. 2007). Because weak internal turbulence implies that little density substructure
is present within these cores, they are unlikely to undergo subsequent fragmentation
during collapse, except to form binaries. The low-mass portion of the CMF should
therefore be conserved in mapping to the IMF, modulo mass removal by outflows.
Although cores in the high-mass end of the CMF are turbulent and thus, in principle,
subject to further fragmentation, the agreement between the CMF and IMF suggests
that this is not a dominant effect.

The environments of observed prestellar cores provide further clues to the pro-
cesses involved in their formation. Most stars form in clusters (Lada & Lada 2003;
see Section 4.3.5), and correspondingly, most (starless) molecular cores are part
of larger cluster-forming dense clumps. These cluster-forming clumps [referred to
as cluster-forming cores by Ward-Thompson et al. (2007)], as observed for exam-
ple in Ophiuchus, Serpens, Perseus, and Orion, have supersonic internal turbulent
linewidths (even though the individual cores within them are subthermal). Compared
to isolated cores, the cores in clusters tend to be more compact in overall size and have
higher densities and column densities; they are also lower in mass (Ward-Thompson
et al. 2007). The column densities of cluster-forming clumps are generally quite large,
and in particular they exceed the mean column densities of the GMCs in which they
are formed. In Perseus, where 80% of the millimeter cores lie in groups and 50% are
in clusters (Enoch et al. 2006), 50% of the total cloud mass is at AV < 4 and 80% is at
AV < 6, whereas 90% of the mass in prestellar cores is in larger structures that have
AV > 6, and 50% is at AV > 8 (Kirk, Johnstone & Di Francesco 2006). Similarly in
Ophiuchus, the prestellar cores are found in high-column density regions (AV > 15
for >90% of the core mass), whereas most of the cloud’s mass has much lower column
densities (70% is at AV < 7) ( Johnstone, Di Francesco & Kirk 2004). The prestellar
cores themselves represent only a tiny fraction of the total cloud mass: 5% in Perseus
(Enoch et al. 2006), and 3% in Ophiuchus ( Johnstone, Di Francesco & Kirk 2004);
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this is comparable to the net observed star-formation efficiency over the lifetime of a
GMC (see Section 3.4). On the largest scales, GMCs generally consist of collections
of filaments, and both the clusters of cores and most of the individual isolated cores
are embedded in these filaments. The structure formation that produces cores, and
eventually stars, is therefore clearly a hierarchical process.

3.3.2. Theoretical proposals and numerical results. Many theories have been
proposed that aim to explain the IMF or some aspect of it, and more recently to explain
the CMF as well (see Elmegreen 2001 and Bonnell, Larson & Zinnecker 2007 for
recent reviews). Although none of the proposals to date have won general acceptance,
several have introduced elements that are likely to be important in the eventual theory
that is developed. Numerical simulations have been valuable in demonstrating that the
general characteristics of observed CMFs arise naturally in turbulent, self-gravitating
flows, and they have also been useful in testing certain specific hypotheses. However,
many features that are seen in the simulations are not yet understood in a fundamental
sense, and limited numerical resolution may affect some existing results.

A variety of different numerical models have been used in computational studies
of the mass distributions of bound and unbound condensations in turbulent, self-
gravitating systems. Most models have adopted an isothermal equation of state: using
SPH techniques, Klessen & Burkert (2001), Bonnell, Bate & Vine (2003), Bonnell,
Clarke & Bate (2006), and Klessen (2001) analyzed decaying-turbulence models with
a variety of power spectra, and Klessen (2001) and Ballesteros-Paredes et al. (2006) an-
alyzed driven-turbulence models. Using grid-based codes in the unmagnetized case,
Ballesteros-Paredes et al. (2006) and Padoan et al. (2007) analyzed driven-turbulence
models. Using grid-based codes and including magnetic fields, Gammie et al. (2003)
analyzed decaying-turbulence models, and Vázquez-Semadeni, Ballesteros-Paredes
& Rodriguez (1997), Ballesteros-Paredes & Mac Low (2002), Li et al. (2004) and
Padoan et al. (2007) analyzed driven-turbulence models. Tilley & Pudritz (2004)
analyzed decaying-turbulence unmagnetized models from a grid-based code.

Other simulations have investigated the effects of nonisothermal equations of state.
Li, Klessen & Mac Low (2003) analyzed driven-turbulence SPH simulations that used
a range of polytropic indices. Bate, Bonnell & Bromm (2003) and Bate & Bonnell
(2005) analyzed the results of SPH decaying-turbulence simulations with a switch
from isothermal to T ∝ ρ0.4 at density 10−13 g cm−3, to represent the transition from
optically-thin to -thick conditions. Jappsen et al. (2005) and Bonnell, Clarke & Bate
(2006) investigated the result of switching from a weakly cooling to weakly heating
barotropic equation of state at a range of densities n ∼ 104 −107 cm−3, using driven-
and decaying-turbulence SPH simulations, respectively.

The distributions obtained by applying clump-finding techniques to simulation
data cubes share many characteristics, generally showing clump mass functions dom-
inated by the low-mass end and tails at high mass that are (marginally) consistent
with power-laws having indices similar to the Salpeter value. In detail, however, the
mass functions depend on the adopted clump-finding algorithm and on parameters
such as density threshold levels and smoothing scales, as well as on physical properties
including the Mach number and the history of a system.

614 McKee · Ostriker



ANRV320-AA45-13 ARI 26 July 2007 14:49

In many simulations that include self-gravity, the high-end slope tends to be-
come shallower over time, as massive objects grow larger. This change in slope may
not represent realistic evolution, if massive condensations in fact should undergo
fragmentation that the simulations do not follow. Failure to capture fragmentation
during collapse could affect results from either grid-based or SPH simulations. Frag-
mentation is seeded by turbulence, which imposes fluctuations in the density (Sasao
1973). These fluctuations grow as a condensation collapses, and in principle could ul-
timately result in fragmentation if they become locally Jeans unstable (Hunter 1962,
Lynden-Bell 1973). Fluctuations at smaller and smaller mass scales would grow to
be highly nonlinear if collapse were to proceed unchecked, so in order to capture
this numerically, turbulence at scales below the sonic scale would have to be resolved
before collapse commences in a given region. However, it is likely that in reality
fragmentation of collapsing high mass condensations is prevented by real physical ef-
fects, rather than numerical effects: accretion onto stars formed early in the collapse
process heats the surrounding gas significantly, which helps limit further fragmen-
tation (Krumholz 2006), and for condensations in cluster-forming regions, outflows
from nearby stars inject small-scale turbulence that may provide support sufficient
to prevent rapid localized collapse (Tan, Krumholz & McKee 2006; Nakamura & Li
2007; see also Klessen 2001). Until physical processes enter to limit further breakup
of massive condensations during their evolution, self-similarity implies they would
fragment owing to the same turbulent processes that produced the massive condensa-
tions in the first place. This is presumably why the IMF in clusters is the same as that
in distributed star formation. Observed dense clumps break up into individual small
cores when imaged at high resolution, suggesting that much of the fragmentation is in
place prior to collapse. Indeed, the fact that the turnover of the IMF is similar to the
Jeans or Bonner-Ebert mass evaluated at the mean turbulent kinetic pressure within
GMCs (see Section 3.1.1), Pkin/kB ∼ 3 × 105 K cm−3, suggests that the ambient
pressure that sets the typical star’s mass is not significantly increased above this level
by collapse prior to fragmentation. However, note that the correspondence between
the turnover in the IMF and the Bonnor-Ebert mass evaluated at the mean turbu-
lent pressure appears to break down in star clusters like the Orion Nebula Cluster
(Hillenbrand & Hartmann 1998) and globular clusters (Paresce & De Marchi 2000),
which are believed to have formed at substantially greater pressures (McKee & Tan
2003); the reason for this is not clear.

A common numerical shortcut to studying cluster formation is to focus on just
a single cluster, rather than the whole hierarchical system; this allows the collapse
and fragmentation to be better resolved. Models of this kind initiate a simulation at
high density with comparable internal turbulent and gravitational energy. However,
this approach misses an aspect of the real situation that may be quite important: Self-
gravitating massive condensations develop out of nonself-gravitating gas in which
pertubations have already been imposed by turbulence. In simulations where the
initial kinetic energy does not exceed the gravitational energy, collapse occurs before
the turbulence is able to imprint a realistic density structure on the system, such that
the subsequent fragmentation may also be unrealistic. In particular, this may lead
to massive fragments continuing to grow over time as they capture low-turbulence
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unstructured gas from their surroundings (competitive accretion; see Section 4.1.2).
To obtain a reliable measure of the high-end CMF from numerical models, it will
be necessary to perform simulations that include large scales as well as cluster scales,
and adequately resolve massive condensations both prior to and during collapse. In
addition, physical processes representing the feedback from star formation must be
properly included in order to impose realistic limits on fragmentation, coalescence,
and accretion after collapse begins.

Another feature of numerical simulations that is at least qualitatively in accord
with observations is the presence of a resolved peak and turnover in the CMF.
Exactly how the location of this peak depends on model parameters, however, is
not yet well determined. In some simulations, the CMF peak is found to be at masses
comparable to the initial Jeans mass of the system (these are primarily low-Mach-
number simulations), whereas in other simulations the peak is at much lower mass
(these are primarily at high Mach number). The turbulent power spectrum can also
affect the position of the CMF peak, and in some simulations the peak is seen to move
to larger mass over time. In fact, the position of the peak for an isothermal simulation
with a fixed turbulence scaling law must be a function of two dimensionless parame-
ters, the ratio of the total mass in the system to the initial Jeans mass, and the turbulent
Mach number on the largest scale. For magnetized simulations, an additional param-
eter is the ratio of mass to the magnetic critical mass. Although limited dependence
on parameters has been explored, a comprehensive and controlled study has not yet
been performed. Note that the mass-weighted density in a turbulent system increases
as the turbulent Mach number increases (see Section 2.1.4), so that the Jeans mass at
the typical (mass-weighted) cloud density decreases as the turbulence level increases,
for a given mean (volume-weighted) density and Jeans mass. This probably accounts
for why the peak of the CMF was found to be far below the mean Jeans mass in studies
with high M, and close to the mean Jeans mass in studies with lower M.

A recurrent theme in star-formation theory is that the characteristic mass—defined
by the peak of the IMF—is the Jeans mass at some preferred density. An upper
limit on the preferred density, and hence a lower limit on the fragment mass, is
the value at which which the optical depth is unity over a Jeans length; this yields
a minimum fragment mass ≈0.007 M� (Low & Lynden-Bell 1976). More recently,
Larson (2005) has argued that the thermal coupling of gas to dust at densities above
nH = nc ≈ 106 cm−3 results in a shift from weakly decreasing to weakly increasing
temperature as a function of density (T ∝ ρ−0.27 changes to T ∝ ρ0.07 at Tmin ∼ 5 K),
and that the Jeans mass ∼0.3 M� at this inflection point sets the preferred mass scale
in the IMF. Part of Larson’s argument is that if structure is filamentary, then the
filaments will contract radially while γ < 1; fragmentation into protostellar cores
would occur when the filament’s central density reaches nc and γ exceeds unity. This
argument does not take into account, however, that the mass per unit length of a
filament may be determined primarily by the turbulence that originally creates it.
In this case, the density nc defines a Jeans length (see Equation 20 in Section 2.2),
so that the mass scale that emerges would be set by this (fixed) length scale ∼λJ(nc )
times the (variable) filament mass per unit length. The simulations of Jappsen et al.
(2005), which vary the density nc at which the temperature minimum occurs, provide
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qualitative support for Larson’s proposal in that the peak of the CMF moves to
lower mass as nc increases. The scaling of peak mass with nc in the simulations is
not consistent with the predicted mpeak ∝ n−0.95

c scaling, however. In addition, these
models did not test dependence on other parameters that may be important, such as
the Mach number of the turbulence or the total mass of the system.

A recent comprehensive proposal to explain the CMF and IMF has been advanced
by Padoan & Nordlund (2002, 2004). They argue that because the strength of any
given compression (in a shock) is related to its corresponding (preshock) spatial scale
�, a power-law turbulence spectrum |v(�)| ∝ �q will result in a distribution of clump
masses that itself follows a power-law. In particular, they propose that the clump mass
function produced by turbulence in a magnetized medium will obey dN (m)/d ln m ∝
m−3/(3−2q ). They further propose that at a given mass m, the fraction of clumps created
by turbulence that collapse is obtained by integrating the density PDF down to the
density at which that mass would be Jeans unstable, i.e., ρmin = π5σ 6

th/(36m2G3).
With this prescription, at high mass the limit of the integral ρmin → 0 and they find
α = 3/(3−2q ) ≈ 1.4. The position of the CMF peak would depend on the properties
of the density PDF; for a log-normal PDF ( fM; see Equation 5 in Section 2.1.4) with
μx = 0.5 − 2, the peak mass would be between 0.8 − 0.1 times the Jeans mass at the
mean (volume-weighted) density in the cloud.

The proposal of Padoan & Nordlund is attractive in its overall thrust, and analy-
sis of numerical simulations (Padoan et al. 2007) shows promising consistency with
some of the model predictions, such as a steepening of the CMF (larger α) with
steeper velocity power spectrum (larger q ). The Padoan & Nordlund proposal, how-
ever, also suffers from missing links in its theoretical underpinnings: (a) The effective
value of vA is defined by Padoan & Nordlund such that the typical compression
ρ ′/ρ in a shock moving at v is a factor v/vA (in fact, compression factors depend on
the magnetic field direction as well as strength). This effective vA is assumed to be
independent of scale, and for numerical comparisons with data they adopt a value
small compared to the typical value in a GMC of ∼2 km s−1. (b) The argument
used to obtain α = 3/(3 − 2q ) for turbulence-induced clumps assumes that each
preshock volume �3 maps to a number of postshock volumes of mass m that is inde-
pendent of �; i.e., �3N (m)/L3 = const. Although this is plausible, other arguments
can be made that draw on the scale-free nature of turbulence, yet yield different
results. Fleck (1996) and Elmegreen & Falgarone (1996) have argued that in nonself-
gravitating turbulence one obtains mN (m) = const. This scaling corresponds to
converting a constant fraction of the mass or volume behind every shock into clumps,
�′3ρ ′N (m)/(L3ρ) = const., where �′ = �vA/v = �ρ/ρ ′ is the postshock scale. One
might also propose that the filling factor of postshock clumps within the whole volume
should be constant, i.e., �′3N (m)/L3 = const. This leads to N (m) ∝ m−(3−3q )/(3−2q ), or
α = 0.75 for q = 1/2. Although the assumption �3N (m)/L3 = const. in the Padoan
& Nordlund formulation yields results that are in agreement with measured CMFs,
a physical argument is needed to explain why this is the correct choice among several
plausible alternatives. In particular, as Padoan & Nordlund’s argument for the slope
α = 3/(3 − 2q ) involves only turbulence, why does this value of α disagree with
the distinctly shallower empirical mass spectrum (αclump ∼ 0.5; see Section 3.1) of
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nonself-gravitating clumps in GMCs? (c) The argument Padoan & Nordlund use to
obtain a formula for the mass function does not appear to take account of substructure
within clumps at a given mass scale, although the presence of substructure is implicit
in their picture. In particular, they assume that any region that is unstable by the
thermal Jeans criterion will collapse. An implicit requirement for this is that at each
density, a contiguous volume containing a mass in excess of the Jeans mass is present.
More generally, because hierarchical density structures are clearly important in na-
ture (most cores and stars are clustered), any fundamental theory should identify how
this comes about. Given these difficulties, it appears premature to accept the Padoan
& Nordlund proposal in its current form, although it is promising as a basis for future
development.

3.4. The Large-Scale Rate of Star Formation

Much of this review focuses on the detailed physical processes of star formation at
and below GMC scales. To understand the structure of a given galaxy, however, or
the evolution of a population of galaxies over cosmological timescales, often only
a very gross characterization of the star-formation processes—such as the overall
SFR and the resulting IMF—is adequate. Many empirical studies of disk galaxies
characterize the SFR in terms of the number of stars formed per unit time per unit
area �̇∗; this is usually reported using either averages over the whole of a galaxy
within some outer radius R, or using azimuthal averages over an annulus of width
d R to give �̇∗(R). Both of these methods average over regions that may have widely
varying SFRs, and the results must be carefully interpreted as strong nonlinearities
are involved. Fortunately, with the data becoming available from large-scale galactic
mapping surveys (e.g., SONG and SINGS; Helfer et al. 2003; Kennicutt et al. 2003),
it will soon be possible to characterize SFRs on scales large compared to individual
GMCs but small enough to separately measure, e.g., SFRs for arm and interarm
regions.

More fundamental than �̇∗ is the star-formation or gas consumption timescale.
This is defined by tg∗ ≡ �g/�̇∗ = Mg/Ṁ∗, where �g is the gas surface density; the
second equality assumes that the same area average is used for the total gas mass
Mg and SFR Ṁ∗. The resulting timescale depends on the gas tracer(s) chosen, which
determines the range of gas densities included in �g . For a chemical species tracing gas
in a class of structures denoted by S that have mean internal gas density 〈ρ〉V = ρS,
and total mass MS, a convenient fiducial time for comparison to tS∗ ≡ MS/Ṁ∗ is
the free-fall time obtained by using ρS in Equation 14. The star-formation or gas
consumption rate is then

Ṁ∗ ≡ εff,S
MS

tff,S
, (38)

where the efficiency over a free-fall time is εff,S = tff,S/tS∗ = �M∗(tff,S)/MS (see
Krumholz & McKee 2005 and Krumholz & Tan 2007; note that they denote this
quantity by SFRff,S). Note that the star-formation efficiency εff,S over the free-fall time
at the mean local density of structures S differs from the star-formation efficiency εS
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over the mean lifetime of individual structures in class S, which is discussed below. The
definition in Equation 38 is particularly useful for describing star formation on local
scales within GMCs, in which different molecular transitions trace a relatively limited
range of densities, and in which densities can be obtained for individual structures that
are spatially resolved and have mass measurements from dust continuum or extinction
observations. Because most of the molecular gas, and essentially all star formation,
is found within GMCs, the SFR in a region with local surface density in GMCs,
�GMC, is given by �̇∗ = εff,GMC�GMC/tff,GMC. Here, tff,GMC is calculated using the
free-fall time within GMCs in a given region. Typical mean densities within GMCs
are nH ∼ 100 cm−3, implying tff,GMC ∼ 4 Myr, but this may vary owing to the effects
of spiral arms, for example. In clumps or cores within GMCs, ρS can be larger by
orders of magnitude compared to ρGMC, yielding a corresponding decrease in tff.

The values of εff,S are generally low (�0.01) over a wide range of density tracers
(see below), and vary only weakly with ρS. Krumholz & Tan (2006) point out that this
suggests that turbulence is limiting star formation, although magnetic regulation is
also possible (but probably not on GMC scales, because they appear to be magneti-
cally supercritical—Section 2.3). In the turbulence-regulation picture, the low overall
efficiency of star formation on GMC scales (over their own free-fall times) is dictated
by the low fraction of gas that concentrates into structures that are sufficiently dense
to collapse before being redispersed by turbulence. The weak variation of εff,S with
density follows naturally if the density obeys a log-normal distribution, which is
consistent both with numerical simulations of supersonic turbulent flows and with
observations of extinction statistics (Sections 2.1.4 and 2.1.5). For a log-normal
distribution defined by Equation 5, let MS be the mass with densities in the range
δxS surrounding xS ≡ ln(ρS/ρ̄), where ρ̄ ≡ 〈ρ〉V is obtained by dividing total GMC
mass by total GMC volume. Then because the SFR Ṁ∗ is independent of tracer,

εff,S

εff,GMC
=

√
4πμx

δxS
exp

[
(xS − 2μx)2

4μx
− 3

4
μx

]
, (39)

where μx ≡ 〈ln ρ/ρ̄〉M is the (mass-weighted) mean within a GMC. With μx ∼ 1.5
[corresponding to mass-weighted mean density 〈ρ/ρ̄〉M = exp(2μx) ∼ 20, typical of
GMCs] and δxS ∼ 1, εff,S/εff,GMC is between 1.4 and 3.4 for 1 < ρS/〈ρ〉M < 10;
larger values of μx keep εff,S ∼ εff,GMC over a larger range of densities. Approximate
constancy of εff,S over a range of densities implies the approximate relation MS ∝ tff ∝
ρ

−1/2
S from Equation 38. Physically, this is because the equilibrium fraction of mass

in a GMC in structures at densities significantly above ρ̄ is equal to the ratio of the
destruction time to the formation time of those structures, tdest,S/tform,S. In a turbulent
medium, the destruction time is of order the dynamical time of the structure, which
decreases with increasing density and decreasing size, whereas the formation time is
of order the dynamical time of the GMC for all structures, because the large-scale
flow dominates. Note, however, that this discussion does not apply to regions in which
self-gravity is strong but turbulence is weak, as occurs in low-mass prestellar cores. In
such cores, εff rises by an order of magnitude or more to ∼0.1. Quiescent cores have
individual lifetimes of a few tff (see Section 3.1.2), and net efficiency of star formation
in each core ∼1/3 owing to the action of protostellar winds (see Sections 3.3.1 and
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4.2.6). These structures have evolved to have internal densities (and hence self-gravity)
high enough that they can resist destruction by the ambient turbulence. In regions
such as forming clusters, where self-gravity causes strong departures from the overall
log-normal density distribution in GMCs and high gravity is offset by locally driven
turbulence, the relation (Equation 39) would also not be expected to apply.

Even within a given density regime, there may be significant cloud-to-cloud vari-
ations in local conditions such that tS∗ need not be a universal quantity even for struc-
tures observed in a given tracer. Indeed, Mooney & Solomon (1988) showed that
for Milky Way GMCs with virial masses (traced in CO) MCO = 104 − 5 × 106 M�
and IR luminosities LIR ∝ Ṁ∗, the ratio tGMC,∗ ∝ MCO/LIR varies over two orders
of magnitude and is not correlated with MCO. Williams & McKee (1997) came to a
similar conclusion from their analysis of OB associations and GMCs in the Galaxy.
With a total GMC mass � 109 M� in the Galaxy and a SFR of several M� year−1,
the mean value of tGMC,∗ ≈ 3 × 108 years, which translates to εff,GMC ∼ 0.01 if
n̄H ∼ 100 cm−3 in GMCs. For dense gas clumps in GMCs, however, it appears that
conditions are more uniform, such that there is less scatter in tS∗ for dense gas trac-
ers. In particular, Wu et al. (2005) show that the ratio LHCN/LIR ∝ Mdense clumps/Ṁ∗
measured in Milky Way star-forming regions agrees with the same values measured
in high-redshift galaxies (Gao & Solomon 2004), for which there is only one order of
magnitude scatter. Wu et al. (2005) estimate a corresponding star-formation timescale
of tHCN,∗ = 8 × 107 years. If the typical density of HCN-emitting gas is ∼105 cm−3,
the corresponding efficiency per free-fall time is εff, HCN ∼ 0.002. Krumholz & Tan
(2007) apply slightly different factors to convert total HCN and IR luminosities to
gas masses and SFRs, and obtain εff,HCN ∼ 0.006. These values of εff are small com-
pared to those for individual cores (∼0.1), which in clustered regions (where most
stars form) have densities ∼107 cm−3 (Ward-Thompson et al. 2007) that are large
compared to the densities traced by HCN.

In spite of the large scatter in tS∗ from one local region to another (in various
density tracers), empirical studies have shown that when averaged over large scales,
tg∗ is correlated with the global properties of gas in a galaxy. The early studies of
Schmidt (1959, 1963) sought to characterize the SFR as a power-law (with index >1)
in the mean gas density (both volume and surface density); this would then translate
to tg∗ (or tff/εff) that varies as a negative power of gas density. More recently, following
Kennicutt (1989), a number of empirical studies of disk galaxies have identified and
explored Kennicutt-Schmidt laws of the form �̇∗ ∝ � p+1

g , for which tg∗ ∝ �−p
g . The

original study by Kennicutt investigated correlations of �̇∗(R) (based on Hα) with
the total �g (R) (including both atomic and molecular gas); he found an index p = 0.3
for �g (R) above a threshold level. Kennicutt (1998) studied correlations of global
averages of �̇∗ with �g (again combining atomic and molecular gas). For the whole
sample including normal galaxies, the centers of normal galaxies, and starbursts, the
fitted index is p = 0.4; the index is slightly larger for just normal spirals. Recent years
have seen a number of other studies of the �g−�̇∗ relationship based on annular
averages in galaxies, using Hα, radio continuum, or far-IR to measure star formation,
and using either the total gas surface density or just the molecular gas contribution
from CO observations (Murgia et al. 2002, Wong & Blitz 2002, Boissier et al. 2003,
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Heyer et al. 2004, Komugi et al. 2005, Schuster et al. 2007). Most of these studies
have found p in the range 0.3−0.4, although larger values of p have been obtained
in some analyses that include both atomic and molecular gas. For dense gas as traced
by HCN, Gao & Solomon (2004) found a linear relationship between the integrated
SFR and the total mass of dense gas, i.e., p = 0, based on a sample including both
normal galaxies and luminous/ultraluminous IR galaxies. For the same sample, the
fitted SFR-gas mass index is p = 0.7 for less dense molecular gas observed in CO
lines. All of these fits involve (at least) an order of magnitude scatter about the mean
relation. Taken together, these results imply that the amount of dense gas available
for star formation increases nonlinearly with the global amount of lower-density gas,
but that the SFR in this dense gas is independent of global galactic properties.

A second approach to characterizing global SFRs introduces the global timescale
associated with the galaxy, the orbital period torb = 2π/�. For grand design spirals,
the SFR is expected to be proportional to the rate at which gas passes through spiral
arms, because GMCs are expected (and observed) to form rapidly in the high-surface-
density gas behind the spiral shock (e.g., Roberts 1969; Kim & Ostriker 2002, 2006;
Shetty & Ostriker 2006). Shu (1973) appears to have been the first to propose this
idea and showed that it is roughly consistent with observations of star formation
in the Galaxy. Wyse (1986) proposed that GMCs, and hence stars, are the result
of atomic cloud-cloud collisions at a rate ∝ �2

g (� − �p ), where �p is the pattern
speed. More generally, Wyse & Silk (1989) suggested that the SFR should scale as
�̇∗ ∝ �g�. This has been confirmed by Kennicutt (1998); the resulting two forms
for the Kennicutt-Schmidt law are

�̇∗ = 0.017�g� � (2.5 ± 0.7) × 10−4
(

�g

1 M� pc−2

)1.4 ± 0.15

M� year−1 kpc−2
. (40)

The fact that there are two forms of the star-formation law implies that there is a
correlation between �g and �; Krumholz & McKee (2005) found � ∝ �0.49

g for a
sample comprised of both normal and starburst galaxies (Kennicutt 1998, Downes
& Solomon 1998). The reason for this correlation is not known at present, but may
be related to an overall tendency for velocity dispersions to increase at large surface
densities (see below). The corresponding gas consumption time is tg∗/torb ≈ 10 with
tg∗ evaluated for the entire galaxy and torb evaluated at the outer edge of the star for-
mation. Subsequent observations have found tmol,∗/torb ∼ 10−100 when considering
the molecular gas alone (Wong & Blitz 2002, Murgia et al. 2002).

Because most star formation is observed to take place within bound GMCs, it is
useful to introduce fGMC ≡ �GMC/�g , i.e., the fraction of gas that is found in GMCs.
The surface densities must be averaged over a region containing a large number of
GMCs, because the specific SFR has very large fluctuations; the average can be over
a local patch of a galaxy, an azimuthal ring, or an entire galaxy. Equation 38 implies

�̇∗ = εff,GMC
�g fGMC

tff,GMC
. (41)

This form of the star-formation law is particularly useful if most of the gas is in
GMCs, fGMC � 1. Because the gas density in the midplane ρg ∝ �2/GQ2 in terms
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of the Toomre Q parameter, and because t−1
ff,GMC ∝ ρ

1/2
GMC ∝ ρ1/2

g , it follows that
�̇∗ ∝ εff,GMC�g fGMC/(Qtorb) (Krumholz & McKee 2005; see below), which is similar
to the orbital time form of the Kennicutt-Schmidt law.

An alternative expression for the SFR follows by noting that if GMCs form
from diffuse gas at a rate Mdiffuse/tdiffuse and are destroyed by star formation at a
rate MGMC/tGMC, then fGMC = tGMC/tlc, where tlc ≡ tdiffuse + tGMC is the life-cycle
time for gas in the galaxy. The mean efficiency of star formation in any GMC over
its lifetime tGMC is εGMC = εff,GMC(tGMC/tff,GMC); in the Milky Way, the observed
average value of εGMC is about 0.05 (e.g., Williams & McKee 1997), corresponding
to tGMC/tff,GMC ≈ 5. The SFR is then

�̇∗ = εGMC
�g

tlc
. (42)

This equation leads to a simple interpretation of the empirical result �̇∗ ∝ �g�

for grand design spirals. In this situation the mean life-cycle time of the gas
should be equal to the timescale between successive encounters with spiral arms,
tlc = (2π/m)(� − �p )−1 for an m-armed spiral. If εGMC varies only modestly with
radius, then well inside corotation (which is most of the star-forming disk) the overall
SFR should obey �̇∗ ∝ �g�. More generally, consider an arbitrary disk galaxy in
which the gas is primarily diffuse, so that the GMC formation time tdiffuse is much
greater than the GMC destruction time (or lifetime) tGMC, and as a result the life-cycle
time tlc � tdiffuse. The characteristic timescale tdiffuse for formation of self-gravitating
structures in a disk with surface density �g is the 2D Jeans time tJ,2D = c eff/(G�g )
(Equation 35). (Actual GMC formation timescales differ from tJ,2D due to rotation and
disk-thickness effects—see references in Section 3.2.1). Using the definition of the
Toomre Q parameter (Equation 32), torb = (tJ,2D/Q)(2κ/�), so that from Equation
42, �̇∗ ∼ 3εGMC�g (Qtorb)−1. Thus, both the diffuse-dominated and GMC-dominated
cases yield �̇∗ ∝ �g/(Qtorb), assuming that the efficiency factors are comparable in
different regions of a galaxy and from one galaxy to another. Because star formation
tends to deplete the gas in any region until Q is near the critical value Qcrit � 1.5 (the-
ory: Quirk 1972; observation: Martin & Kennicutt 2001, Wong & Blitz 2002, Murgia
et al. 2002, Boissier et al. 2003), this yields the orbital time form of the Kennicutt-
Schmidt law (including the normalization) when εGMC ≈ 0.05. GMC formation on
a timescale ∼tJ, 2D, implying a SFR of �̇∗ ∝ �2

g /c eff if εGMC is weakly varying, also
yields the other form of the Kennicutt-Schmidt law if the effective velocity dispersion
increases with surface density according to c eff ∝ �1−p

g . A significant increase in the
gas velocity dispersion at small radii, where �g is generally larger, has been noted
in several galaxies (Kenney, Carlstrom & Young 1993; Sakamoto 1996; Walsh et al.
2002; Lundgren et al. 2004; Schuster et al. 2007), although there is no quantitative
theory for this increase.

A quantitative theory for the galactic SFR must determine the star-formation
efficiency (e.g., εff,GMC or εGMC) as well as the corresponding overall rate. [An ex-
ception is the theory of Silk (1997), who notes that the porosity of hot gas in a
galaxy is determined by the SFR; the SFR can thus be expressed in terms of the
porosity, but this remains uncertain.] Tan (2000) proposed that the overall SFR is
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determined by cloud-cloud collisions, but he set the efficiency based on comparison
with observations. Elmegreen (2002, 2003) suggested that the SFR per unit volume is
ρ̇∗ � εcore fcore(Gρcore)1/2ρ, where fcore is the fraction of gas in dense cores; the value
of this was set by comparison with observation. Simulations by Kravtsov (2003), by
Li, Mac Low & Klessen (2005a,b; 2006), and by Tasker & Bryan (2006) show that
the fraction of high-density gas scales as �1.4

g , but the definition of high-density is
arbitrary and the dependence of the SFR on this definition is not known.

A theory for the star-formation efficiency per free-fall time has been given by
Krumholz & McKee (2005); for galaxies in which fGMC � 1, this is proposed as a
complete theory of the Kennicutt-Schmidt law. The first three assumptions under-
lying the theory have been discussed above: They assume that star formation occurs
primarily in GMCs, so that the SFR is described by Equation 41, that the density
PDF in GMCs is log normal, as inferred from simulations of turbulence in gas that
is approximately isothermal (Section 2.1.4), and that the IMF has the standard form.
The final assumption is that low-mass stars form in all gas dense enough that the sonic
length in the surrounding turbulent gas exceeds the Jeans length (λJ < �s ) (Padoan
1995) with an efficiency εcore ∼ 1/2 from the theoretical estimate of Matzner &
McKee (2000). The condition that λJ < �s ensures that critical Bonnor-Ebert spheres
are not torn apart by turbulence; the corresponding critical density implies that the
thermal pressure in the cores matches the turbulent pressure in the environment,
ρcore/ρ̄ � M2. An important part of this last assumption is that the regions that are
dense enough to satisfy λJ < �s have masses large enough to collapse. The normal-
ization for the SFR is based on the simulations of Vázquez-Semadeni, Ballesteros-
Paredes & Klessen (2003). These assumptions lead to a star-formation efficiency
εff,GMC � 0.017α−0.68

vir (M/100)−0.32. Because the virial parameter in GMCs is of or-
der unity and the Mach numbers are somewhat smaller than 100 in regions where
they have been observed (and greater than a few 100 even in unresolved starbursts),
this corresponds to a typical εff,GMC ∼ 0.02. For galaxies in which the gas is not fully
molecular, Krumholz & McKee (2005) adopt the phenomenological result for fGMC

obtained by Blitz & Rosolowsky (2006). They show that the resulting SFR agrees
well with Kennicutt’s observed relations (Equation 40).

Finally, we remark that controversy continues to surround the question of what
physical process defines the observed outer-disk thresholds Rth for active star forma-
tion. Kennicutt (1989) and Martin & Kennicutt (2001) argue that disk thresholds are
set by gravitational stability considerations in shearing, rotating disks, and find a mean
value of Q ≈ 1.4 when they adopt a constant value c eff = 6 km s−1 for their sample.
Numerical simulations of isothermal gas disks, including both disk thickness effects
and the gravity from an active stellar disk, quantitatively support this conclusion (Li,
Mac Low & Klessen 2005a; Kim & Ostriker 2007). However, Schaye (2004), build-
ing on the suggestion of Elmegreen & Parravano (1994), argues that star-formation
thresholds are defined by the condition that the pressure is high enough that a cold
component of the atomic ISM can exist. This transition point depends on the UV
intensity and metallicity (e.g., Wolfire et al. 2003), but typically corresponds to thresh-
old surface density ∼3 − 10 M� pc−2. Schaye essentially reverses the argument for a
Q threshold: He argues that when a significant fraction of the ISM becomes cold, Q
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drops significantly and gravitational instability ensues. An advantage of this proposal
is that it can naturally account for the isolated patches of star formation that occur
outside Rth (Ferguson et al. 1998, Boissier et al. 2006), because star formation occurs
wherever the pressure of gas exceeds the critical value. However, though the model
gives a necessary condition for star formation, it does not give a sufficient condition:
Some of the galaxies in the Martin & Kennicutt (2001) sample have Rth inside the
radius at which the gas becomes molecular, which in turn is inside the radius at which
cold atomic gas first appears (see also de Blok & Walter 2006, who find evidence of a
cold atomic component even in nonstar-forming regions). In these cases, it is possible
that MRI-driven turbulence in the outer disk maintains Q > 1 even when some of
the gas is cold (Piontek & Ostriker 2007).

4. MICROPHYSICS OF STAR FORMATION

4.1. Low-Mass Star Formation

Star formation is traditionally divided into two parts: Low-mass stars form in a time
short compared to the Kelvin-Helmholz time, tKH = Gm2

∗/RL, whereas high-mass
stars form in a time �tKH (Kahn 1974). This distinction between low-mass and high-
mass protostars is not fully satisfactory, however, because for a sufficiently high ac-
cretion rate any protostar would be classified as low-mass. We somewhat arbitrarily
divide low- and high-mass stars at a mass of 8 M�. Protostars that will form stars
with masses significantly below this value have luminosities dominated by accretion,
and they form from cores that have masses on the order of the thermal Jeans mass.
Protostars above this mass have luminosities that are dominated by nuclear burning
unless the accretion rate is very high, and if they form from molecular cores, those
cores are significantly above the thermal Jeans mass. Low-mass stars undergo ex-
tensive premain-sequence evolution in the Hertzsprung-Russell diagram, from the
point on the birthline, where they cease accreting and are revealed (Stahler 1983;
see also Larson 1972), to the main sequence. Here we briefly review the current
understanding of how such stars form.

4.1.1. Theory of core collapse and protostellar infall. As discussed above,
low-mass stars appear to form from gravitationally bound cores. The timescale for
the collapse of these cores determines both the timescale for the formation of a star
and the accretion luminosity. Note that the rate of infall onto the star-disk system,
ṁin, can differ from the rate of accretion onto the protostar, ṁ∗, because some of the
infalling gas can be temporarily stored in the disk. The collapse of such cores and the
growth of the resulting protostars has been reviewed by Larson (2003), and we draw
on this work here. At the outset of theoretical studies of star formation, it was realized
that isothermal cores undergoing gravitational collapse become very centrally con-
centrated, with a density profile that becomes approximately ρ ∝ r−2 (Bodenheimer
& Sweigart 1968, Larson 1969). Prior to the formation of the protostar, there
is a central, thermally supported region of size r � λJ. Collapse of a marginally
unstable core begins near the outer radius. The r−2 density gradient is created as the
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wave of collapse propagates inward, leaving every scale marginally unstable as the
collapse accelerates (cf. Larson 2003). That is, because λJ ∼ c s /(Gρ)1/2 (Equation
20), a sphere that is marginally unstable at each scale, r ∼ λJ, will have ρ ∼ c 2

s /(Gr2)
when the protostar is first formed; the corresponding infall rate is

ṁin ∼ MG

tG
= c 3

s

G
⇒ ṁin = φin

c 3
s

G
, (43)

where the gravitational mass and radius are defined in Equation 13 and φin is a
numerical factor that is typically �1. (When the effect of protostellar outflows is
included, the infall rate is reduced by a factor εcore < 1.) Although this result was
first derived for an isothermal sphere, Stahler, Shu & Taam (1980) emphasize that it
should apply approximately to the collapse of any cloud that is initially in approxi-
mate hydrostatic equilibrium, with c 2

s → c 2
eff = c 2

s + v2
A + v2

turb including the effects
of magnetic fields and turbulence as well as thermal pressure; Shu, Adams & Lizano
(1987) suggest that c eff � 2c s , however. This infall rate explicitly depends only on the
sound speed, but it implicitly depends on the density of the core: because the core
was assumed to be initially in hydrostatic equilibrium, Equation 43 is equivalent to
ṁin ∼ Mcore/tG ∝ Mcoreρ

1/2.
There are two limiting cases for the gravitational collapse of an isothermal sphere.

In the first case, originally considered by Larson (1969) and Penston (1969) and
extended by Hunter (1977), one begins with a static cloud of constant density and
follows the formation of the r−2 density profile. At the time when the protostar first
forms (i.e., when the central density reaches infinity in this idealized calculation),
the collapse is highly dynamic, with an infall velocity of 3.3c s . The infall rate onto
the star is large, rapidly increasing from ṁin = 29c 3

s /G at the moment of protostar
formation to ṁin = 47c 3

s /G. In the physically unrealistic case of an infinite, uniform
medium, the accretion rate would remain at this high value; in practice, the accretion
rate rapidly declines after the formation of a point mass (see below). In the opposite
case, considered by Shu (1977), one assumes that the evolution to the r−2 density
profile is quasi-static (most likely owing to the effects of magnetic fields—see below),
so that the infall velocities are negligible at the moment of protostar formation. The
resulting initial configuration is the SIS, which is an unstable hydrostatic equilibrium.
The collapse is initiated at the center, and the point at which the gas begins to fall
inward propagates outward at the sound speed (the expansion wave): Rew = c s t. This
solution is therefore termed an inside-out collapse. For r ≥ Rew, the density is that of
a SIS, ρ = c 2

s /(2πGr2); for r < Rew, the gas accelerates until it reaches free fall, with
v = −(2Gm∗/r)1/2 and ρ0 ∝ r−3/2. The generalized post-core-formation solutions of
Hunter (1977) share the same density and velocity scalings at small radii. The infall
rate for Shu’s expansion wave solution is constant in time,

ṁin = 0.975c 3
s /G = 1.54 × 10−6 (T/10 K)3/2 M� year−1. (44)

The total mass inside the expansion wave at time t is 2ṁint, so that about half this mass
is in the protostar (i.e., few ≡ m∗/mew � 1/2). Larson (2003) describes the Larson-
Penston-Hunter and Shu solutions as fast and slow collapse, respectively, and suggests
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that reality is somewhere in between. A general discussion of the family of self-similar,
isothermal collapse solutions has been given by Whitworth & Summers (1985).

Observations suggest that the cores that form low-mass stars initially have density
profiles that approximate those of Bonnor-Ebert spheres (Section 3.1). Foster &
Chevalier (1993) used time-dependent simulations to follow the collapse of such
spheres under the assumption that support is by thermal pressure alone. They found
that the collapse of the innermost, nearly uniform, part of a critical Bonnor-Ebert
sphere (i.e., one with a center-to-edge density contrast of 14.1) approaches, but does
not reach, the Larson-Penston solution prior to and at the time of core formation.
Shortly thereafter, the infall rate begins to decline; there is no phase of constant infall
for a critical Bonnor-Ebert sphere. However, a sphere that is initially in an unstable
equilibrium with a larger center-to-edge density contrast has an extended (outer)
region in which the density scales as r−2. In this case the infall rate starts off as in the
critical Bonnor-Ebert case and then declines to the constant value for an SIS. The
infall rate eventually decreases below the SIS value when a rarefaction wave from the
boundary of the cloud reaches the origin (see Vorobyov & Basu 2005a). Numerical
simulations of gravitational collapse in an unmagnetized, turbulent medium show
that the initial spike and subsequent decline of the infall rate are typical (Schmeja &
Klessen 2004).

Most of the theoretical work (except for simulations) on low-mass star formation
has neglected the role of turbulence in the core. This is generally a valid approximation
for low-mass cores, but it becomes increasingly inaccurate as the core mass increases.
When turbulence is included, it is generally in the microturbulent approximation.
Bonazzola et al. (1987, 1992) treated the turbulent pressure as being scale-dependent,
and suggested that turbulence could stabilize GMCs while allowing smaller scales to
undergo gravitational collapse. Lizano & Shu (1989) introduced a phenomenological
model for turbulence, a logotropic equation of state (Section 2.2), to treat the
contraction of the core. Myers & Fuller (1992) and Caselli & Myers (1995) modeled
cores that are supported in part by turbulent motions with a density distribution that
is the sum of an r−2 power-law for a thermal core and a flatter power-law for the
turbulent envelope. Turbulent cores also can be approximately modeled as polytropes
with γp < 1 (Section 2.2), and when cores collapse, the adiabatic index γ can exceed
unity (McKee & Zweibel 1995; Vázquez-Semadeni, Canto & Lizano 1998). Ogino,
Tomisako & Nakamuro (1999) generalized the Foster & Chevalier (1993) calculation
and found that both the peak infall rate and the rate of decline of the infall rate are in-
creased for γ = γp > 1. McLaughlin & Pudritz (1997) generalized the Shu solution to
singular polytropic and singular logatropic spheres. They showed that the expansion
wave accelerates in time as Rew ∝ t2−γp and the infall rate increases as ṁin ∝ t3(1−γp )

(logatropes correspond to γp → 0). The ratio of the mass in the protostar to that
engulfed by the expansion wave is few � 1/2, 1/6, and 1/33 for γp = 1, 2/3, and a
logatrope, respectively. The infall rate for a singular polytropic sphere can also be
expressed as ṁin = φ∗m∗/tff, where tff is the free-fall time measured at the initial
density of the gas just accreting onto the star and φ∗ � 1.62 − 0.96/(2 − γp ) (McKee
& Tan 2002; this is valid for 0 < γp < 1.2). Inside-out collapse solutions for clouds
that are initially contracting and that have γ �= γp have been developed by Fatuzzo,
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Adams & Myers (2004). For clouds that are supported in part by turbulence, the
decay of the turbulence can initiate the collapse of the core (Myers & Lazarian 1998).

In the innermost regions of the collapsing core, the opacity eventually becomes
large enough that the gas switches from approximately isothermal behavior to adia-
batic behavior. The initial calculations were carried out by Larson (1969), and recent
calculations include those by Masunaga, Miyama & Inutsuka (1998), Masunaga &
Inutsuka (2000), and Wuchterl & Tscharnuter (2003); all assume spherical symmetry.
The gas begins to become adiabatic at a density ρ ∼ 10−13 g cm−3. The first core
forms when the gas becomes hot enough to stop the collapse, and an accretion shock
forms at a radius ∼5 AU and with an enclosed mass ∼0.05 M�. Once the gas is hot
enough to dissociate the molecular hydrogen, a second collapse ensues and the proto-
star is formed. When opacity effects are included, the maximum infall rate is limited
to about 13c 3

s /G (Larson 2003), and the average infall rate over the time required to
assemble 80% of the final stellar mass is about 1.5–3 times the SIS value (Wuchterl
& Tscharnuter 2003).

4.1.1.1. Effects of rotation. The two classical problems of star formation are the
angular momentum problem and the magnetic flux problem: A star has far less an-
gular momentum and magnetic flux than an equivalent mass in the ISM. Magnetic
fields effectively remove angular momentum so long as the contraction of the core
is sub-Alfvénic and the neutral and ionized components of the infalling gas are rea-
sonably well coupled (e.g., Mestel 1985, Mouschovias 1987). Once either of these
conditions breaks down, the gas will collapse with (near-)constant specific angular
momentum, j = �vφ , where � is the cylindrical radius, provided the transport
of angular momentum by turbulence and gravitational torques is unimportant. For
collapse at constant j , a disk will form with a radius

Rd = (Rd vKep)2

Rd v
2
Kep

= j 2

Rd v
2
Kep

= �2
0�

4
0

Gm∗d
= 3�0βrot(�0), (45)

where vKep = (Gm∗d /Rd )1/2 is the Keplerian velocity, m∗d is the mass of the star and
disk (assumed to be equal to the initial mass M[�0]), βrot is the rotational energy
parameter defined in Equation 30, and �0 and �0 are the initial cylindrical radius
and angular velocity. In the collapse to a disk, the radius shrinks by a factor 3 βrot.
Note that if the rotational velocity is proportional to the velocity dispersion, as might
be expected for a cloud supported by turbulent motions (Burkert & Bodenheimer
2000), then βrot(�0) is constant (Goodman et al. 1993), and the disk radius is a fixed
fraction of the initial radius. However, clouds supported primarily by thermal pressure
are generally assumed to be in uniform rotation. Recall that Goodman et al. (1993)
found that cores typically have βrot(Rcore) ∼ 0.02.

As in the nonrotating case, two limits for rotating collapse have received the great-
est attention. These studies have generally assumed isothermality and have focused
on inviscid, axisymmetric flow, although the latter conditions are likely to be vio-
lated in real disks, as discussed in Section 4.2 below. If the core initially has constant
density and is rotating slowly, then it collapses to a disk that evolves to a configura-
tion with a singular surface density profile, � ∝ �−1 (Norman, Wilson & Barton
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1980; Narita, Hayashi & Miyama 1984). The self-similar solution for the collapse of
a rotating disk has been obtained by Saigo & Hanawa (1998), who pointed out that
this solution is the analog of the Larson-Penston-Hunter solution for nonrotating
collapse (i.e., it includes the time after the formation of the central singularity in �).
A quasi-equilibrium disk with a radius Rd � j 2/Gm∗d (Equation 45) grows after for-
mation of the central singularity. Because both M(� ) and j scale as � 2 in the inner
part of the initial spherical cloud, it follows that j ∝ M(�0). Angular momentum is
conserved during disk formation, so when a mass M(�0) = m∗d has collapsed into the
disk, Rd ∝ j 2/m∗d ∝ m∗d , which grows linearly in time in the isothermal case. Note
also that because � ∝ �−1 in the disk, it follows that after disk formation M and
therefore j ∝ � ; as a result, the rotational velocity in the disk is constant, indepen-
dent of � . The infall rate into the central disk is about (3 − 11)c 3

s /G, depending
on the angular momentum; this is significantly less than that for the nonrotating
Larson-Penston-Hunter solution (Saigo & Hanawa 1998). In this solution the gas
outside the equilbrium disk is dynamically contracting and is assumed to be itself
in a thin disk. Numerical calculations indicate that relaxation of the thin disk ap-
proximation increases the accretion rate by about a factor of two for the case they
considered.

Alternatively, if the core settles into a centrally concentrated, spherical, quasi-
equilibrium state prior to collapse, a slow, inside-out collapse ensues. The density
distribution of the supersonically infalling gas in the vicinity of the disk has been de-
termined by Ulrich (1976) and by Cassen & Moosman (1981) under the assumptions
that the mass is dominated by the central protostar and that the gas is spherically
symmetric far from the protostar. The outer radius of the disk is given by Equation
45, but the disk is far from Keplerian—there is a large inward velocity that leads to
a dynamically contracting outer disk and quasi-equilibrium inner disk (Stahler et al.
1994). This solution for the inner part of the infall can be joined smoothly to the
solution for the collapse of an SIS (Terebey, Shu & Cassen 1984). More generally, if
the cloud initially has a power-law density profile (ρ ∝ r−kρ ) with kρ > 1, then it is
straightforward to show that, for �0 = const, the disk radius is Rd ∝ m(kρ+1)/(3−kρ )

∗d .
For the collapse of a slowly rotating SIS (kρ = 2), this equation implies that the disk
radius varies as Rd ∝ m3

∗d ∝ t3 (Cassen & Moosman 1981). This rapid increase in
disk radius with time is based on the assumption that the cloud can evolve to a rigidly
rotating SIS. Subsequent work (described below) shows that even when magnetic
fields are included, this condition is difficult to realize, and Rd tends to increase only
linearly with time.

4.1.1.2. Effects of magnetic fields. Poloidal magnetic fields prevent gravitational
collapse when they are sufficiently strong (subcritical cores), and they inhibit con-
traction otherwise (supercritical cores), as discussed in Section 2.2. Magnetic tension
acts to dilute the force of gravity. In nonrotating disks, this effect can be modeled
approximately by adopting an effective gravitational constant (Basu 1997, Nakamura
& Hanawa 1997, Shu & Li 1997), Geff = (1 − μ−2

� )G, where μ� ≡ M/M� (Section
2.2) is assumed to be independent of r and must be greater than unity for gravita-
tionally bound clouds; this equation is exact if the disk is also thin (Shu & Li 1997).
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As a result, the mass of a thin, nonrotating, isothermal, magnetically supercritical
disk in equilibrium is M(r) = [1/(1 − μ−2

� )]2c 2
s r/G (Li & Shu 1996), which can be

much larger than in the absence of magnetic support. If such a disk is initially in static
equilibrium (which is difficult to arrange), the infall rate resulting from an inside-out
collapse has φin = 1/(1 − μ−2

� ) in Equation 43 to within about 5% (Li & Shu 1997,
Allen, Shu & Li 2003).

Mouschovias and his students have carried out an extensive set of calculations on
the evolution of a magnetized disk assuming that the disk is thin and axisymmetric,
which reduces the calculation to one spatial dimension. They followed the evolu-
tion from a subcritical initial state to supercritical collapse under the influence of
ambipolar diffusion (Fiedler & Mouschovias 1993), including the effects of charged
grains (Ciolek & Mouschovias 1994, 1996, 1998) and rotation (Basu & Mouschovias
1994, 1995a,b). In these calculations, the magnetic field has a characteristic hour-
glass shape in which the field is normal to the disk and flares above and below it;
observations that are consistent with this geometry have been obtained recently at a
resolution of 700 AU (Girart, Rao & Marrone 2006). Galli & Shu (1993a,b) show that
even if the magnetized core began with a spherical shape, it would collapse to a disk,
which they term a pseudodisk as it is not rotationally supported. The calculations of
Mouschovias and his students cited above typically began in a very subcritical state,
with μ� � 0.25, and stopped when the central density reached 109.5 cm−3, which is
about the point at which the central regions are expected to become opaque and non-
isothermal. They found that thermal pressure exerts an outward force �30% of that
due to gravity, whereas centrifugal accelerations are negligible in this phase of evolu-
tion. The central part of the core undergoes an extended phase of evolution until it
becomes supercritical, at which point the contraction accelerates and the mass-to-flux
ratio increases more slowly.

Basu (1997) has given a semianalytic treatment of these results. He showed that the
surface density profile in the inner core is �(r, t) � �c (t)/[1+ (r/R)2]1/2, where �c is
the central surface density and R(t) = 2c 2

s /G�c (t) is the radius of the region in which
thermal pressure is sufficiently strong to maintain an approximately constant density
(Narita, Hayashi & Miyama 1984 found a similar result for rotating collapse without a
magnetic field). The supercritical core has a radius Rcrit obtained by setting the central
surface density equal to twice the critical value [�c = μ� B0/(2πG1/2) with μφ = 2,
where B0 is the initial field strength in the core]. He showed that the slow increase
in the mass-to-flux ratio, μ� ∝ �0.05, results in a significant reduction in magnetic
support at high densities. The density profile in the inner part of the disk (r � Rcrit)
has kρ � 2, but the increasing relative importance of magnetic forces in the outer
regions cause it to flatten out so that the mean value in the entire core is kρ � 1.6.
Basu found that the rotational velocity is independent of r , just as Saigo & Hanawa
(1998) did for the nonmagnetic case. Extending the problem to include the time after
protostar formation, Contopoulos, Ciolek & Königl (1998) obtained a similarity
solution to the nonrotating collapse problem with ambipolar diffusion and found
an infall rate ṁin = 5.9c 3

s /G at the time of protostar formation. Two-dimensional
numerical calculations have confirmed this result and have shown that the infall rate
subsequently drops by somewhat less than a factor of 2 (Ciolek & Königl 1998).
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Shu, Li & Allen (2004) have considered very different initial conditions, in which
a uniform field threads a SIS. Because the flux-to-mass ratio is zero at the origin and
increases outward, magnetic effects are negligible at the center and become important
only at a characteristic length scale Rch = π c 2

s /G1/2 B, corresponding to the condition
that MG ∼ M� (a similar length scale arises in studies of collapse with ambipolar
diffusion, as may be inferred from Basu & Mouschovias 1995b). They follow the
collapse under the assumption that the flux is frozen to the gas and find that the infall
rate declines after the expansion wave reaches Rch; this is analogous to the result of
Ciolek & Mouschovias (1995), who found a similar result for the case of collapse with
ambipolar diffusion when the expansion wave reached a point at which the ambipolar
diffusion was inhibited by photoionization. The initial conditions assumed by Shu,
Li & Allen (2004) lead to a poloidal field that decreases inward, whereas calculations
that start from nonsingular initial conditions and include ambipolar diffusion find
that the poloidal field strongly increases inward.

A full similarity solution for the evolution of the collapsing core after it has fallen
into a thin disk and a protostar has formed at the center, including rotation, magnetic
fields, and ambipolar diffusion, has been obtained by Krasnopolsky & Königl (2002).
They assumed that the gas is in a thin disk with a constant rotational velocity (see
above); how this assumption would be affected by turbulence, which would thicken
the disk and transport angular momentum, is unclear. The infalling gas goes through
two shocks, a C-shock (which has a structure dominated by ambipolar diffusion—e.g.,
Draine & McKee 1993) and a shock at the outer edge of the centrifugally supported
disk. When the protostar reaches 1 M�, the C-shock is at about 103 AU and the
centrifugal shock is at about 102 AU, consistent with data on T Tauri systems (see
Section 4.2.1 below). Within the self-similar framework, they found that magnetic
braking can be adequate to maintain accretion onto the central protostar; in this case
there would be no need for internal disk stresses to drive accretion. The infall rate in
their fiducial case is 4.7c 3

s /G; for a gas at 10 K, this corresponds to a star-formation
time tsf = 1.3 × 105 (m∗/M�) years. Their solution does not include an outflow,
but they show how one might be included and estimate that this could reduce the
accretion rate by a factor of �3. In sum, based on the theoretical work to date, it is
clear that the infall rate is proportional to c 3

eff/G, where c eff is an effective sound speed
(Stahler, Shu & Taam 1980), but the value of the coefficient and its time dependence
have yet to be determined in realistic cases.

The magnetic flux problem in star formation is that stars have very large values for
the mass-to-flux ratio (μ� ∼ 104 − 105 in magnetic stars, ∼108 in the Sun—Nakano
1983), whereas they form from gas with μ� ∼ 1. This problem does not have an ade-
quate solution yet, but it appears that it must be resolved in part on scales �1000 AU
and in part on smaller (∼AU) scales. Detailed calculations of the ionization state of
the infalling and accreting gas show that the ionization becomes low enough that the
field decouples from the gas at densities of order 1010.5 − 1011.5 cm−3 (Nishi, Nakano
& Umebayashi 1991; Desch & Mouschovias 2001; Nakano, Nishi & Umebayashi
2002); decoupling occurs at a somewhat lower density after the formation of the
central protostar, owing to the stronger gravitational force (Ciolek & Königl 1998).
Li & McKee (1996) showed that once the field decouples from the gas, magnetic
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flux accumulates in the accretion disk as the gas flows through the field and onto the
protostar. The pressure associated with this field is strong enough to drive a C-shock
(which has a structure dominated by ambipolar diffusion) into the infalling gas. The
radius of the shock is predicted to be several thousand AU at the end of the infall
phase of a 1-M� star; inside the shock, the field is approximately uniform (except
close to the star) and the gas settles into an infalling, dense disk that they identified
with the outer disk observed in HL Tau (Hayashi, Ohashi & Miyama 1993).

These results have been confirmed and improved upon by Contopoulos, Ciolek
& Königl (1998), Ciolek & Königl (1998), and Krasnopolsky & Königl (2002). Tassis
& Mouschovias (2005) have carried out 2D axisymmetric calculations with careful
attention to the evolution of the ionization and find that the location of the shock os-
cillates, leading to fluctuations in the accretion rate; it is important to determine if this
effect persists in a full 3D simulation. Tassis & Mouschovias (2007a,b,c) find that the
magnetic field in the central region (r � 10 AU) is about 0.1 G at the end of their cal-
culation, when the central star has a mass ∼0.01 M�; this is at the low end of the fields
inferred in the early solar nebula from meteorites, which are in the range of 0.1−10 G
(Morfill, Spruit & Levy 1993). They show that ohmic dissipation becomes as impor-
tant as ambipolar diffusion at densities �1012.5 cm−3, but it does not affect the total
magnetic flux. However, even though these processes significantly reduce the field
within a few AU of the protostar, they are not sufficient to reduce the magnetic flux in
the protostar to the observed value (Nakano & Umebayashi 1986, Li & McKee 1996,
Ciolek & Königl 1998, Li 1998, Tassis & Mouschovias 2005). It is possible that turbu-
lent diffusion (Li & McKee 1996) or magnetic reconnection (Mestel & Strittmatter
1967, Galli & Shu 1993b) plays a role in further reducing the magnetic flux. Recon-
nection alters the topology of the field and can displace the region in which the flux
crosses the forming or accreting disk. However, reconnection cannot actually destroy
flux (a common misconception), because at sufficient distance from the protostar the
plasma is a good conductor and the total flux inside this conductor must be conserved.
At the present time, the solution to the magnetic flux problem remains incomplete.

As remarked above (Section 4.1.1), magnetic fields are thought to play a critical role
in solving the classical angular momentum problem by means of magnetic braking
(Mestel 1985, Mouschovias 1987). Indeed, magnetic braking when the field is frozen
to the matter is so effective that Allen, Li & Shu (2003) and Galli et al. (2006) have
argued that magnetic reconnection is required to reduce the field and therefore the
braking enough that a Keplerian disk can form. The infall solution of Krasnopolsky
& Königl (2002), which includes ambipolar diffusion, and the numerical simulations
of Hujeirat et al. (2000), which include both turbulence and ambipolar diffusion,
suggest that Keplerian disks can form without reconnection, but nonetheless indicate
that predicting the evolution of the specific angular momentum of the infalling gas is
a complex problem. However, it is not clear that any of these theoretical models are
consistent with the observations of Ohashi et al. (1997), which show that the specific
angular momentum in gas associated with several protostars in Taurus is constant for
10−3 pc < r < 0.03 pc.

Numerical simulations, as opposed to numerical integration of the underlying
partial differential equations, are required to study core collapse in 2D or 3D without
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additional assumptions (such as self-similarity or a thin-disk condition). A critical
review of numerical simulations of low-mass star formation is given by Klein et al.
(2007). To date, such simulations have not included ambipolar diffusion, nor have they
simultaneously included radiative transfer and magnetic fields; most simulations have
also stopped prior to the formation of the protostar. A prediction of these simulations
is that a slow (v ∼ c s ∼ 0.2 km s−1) outflow should occur at large radii (∼103

AU; Tomisaka 1998, 2002; Banerjee & Pudritz 2006). These authors suggest that
this outflow is related to the observed bipolar outflows, but Allen, Li & Shu (2003)
disagree. In any case, this large-scale outflow could be important in setting the outer
boundary conditions for the jets and higher-velocity outflows that are observed (see
Sections 4.2.4, 4.2.5).

4.1.2. Bondi-Hoyle accretion. Once a protostar star has formed by gravitational
collapse of a core, it can continue to grow by gravitational accretion from the ambient
medium. Most treatments of this process do not distinguish between the gas that
accretes directly onto the star and the gas that first falls onto the disk. Hoyle &
Lyttleton (1939) first developed the theory of accretion by a moving point mass, and
Bondi (1952) extended the theory to the case in which the star is at rest in a medium of
finite temperature. Today, gravitational accretion by a stationary object is generally
referred to as Bondi accretion, whereas that by a moving object is referred to as
Bondi-Hoyle accretion. If the density and sound speed far from the star are ρ and
c s , respectively, and the star is moving at a velocity v0 = M0c s through the ambient
medium, then the characteristic radius from which the star accretes is

RBH = Gm∗(
1 + M2

0

)
c 2

s
. (46)

The accretion rate is

ṀBH = 4πφBH R2
BHρc s

(
1 + M2

0

)1/2 = 4πφBHρG2m2
∗(

1 + M2
0

)3/2 c 3
s

, (47)

where φBH is a number of order unity that fluctuates somewhat due to instabilities in
the flow (Ruffert & Arnett 1994).

There are a number of assumptions that go into this result: (a) The mass inside
RBH is dominated by the mass of the star—i.e., the self-gravity of the accreting gas is
negligible. One can show that

M(RBH)
m∗

= 5.85(
1 + M2

0

)3

(
m∗

MBE

)2

, (48)

so that this condition is equivalent to requiring that the stellar mass be small com-
pared to the Bonnor-Ebert mass (Equation 15) in the ambient medium (for M0 � 1).
(b) The tidal gravitational field is negligible; when it is not, RBH is replaced by the tidal
radius (Bonnell et al. 2001a). (c) The magnetic field is negligible. Based on dimensional
scalings, a rough approximation for the effect of a magnetic field on the accretion rate
would be to make the replacement v0 → (v2

0 + v2
A)1/2. (d ) The ambient gas is mov-

ing at a uniform velocity. In fact, gas in molecular clouds is generally supersonically
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turbulent, so that an accreting star experiences large fluctuations in both the density
and velocity of the accreting material. Krumholz, McKee & Klein (2006) showed that
the mean accretion rate in a turbulent medium is given by Equation 47 with ρ equal
to the mean density, M0 replaced by Mturb, and φBH � 3.5 ln(0.70M turb), provided
that the 3D Mach number Mturb of the turbulence is large compared to M0 and
compared to unity (they verified this result for M0 = 0 and 3 ≤ Mturb ≤ 10). This
result was derived from simulations of isothermal gas, but it should be approximately
valid for other equations of state also. The median accretion rate is significantly less
than the mean, however.

The dominant paradigm for star formation is gravitational collapse, but an alter-
native is that stars (or at least relatively massive stars) are formed primarily by the
capture and subsequent accretion of matter that is initially unbound to the star (Zin-
necker 1982, Bonnell et al. 1997). Because protostars compete for gas from a common
reservoir, this process is termed “competitive accretion.” The simulations of Bonnell
et al. (1997) show that a few of the fragments gain most of the mass; these are the
ones that reside primarily in the central regions of the clump and have the highest
accretion rates. Because gravitational accretion scales as m2

∗, initial differences in pro-
tostellar masses are amplified. This process has the potential of producing the IMF,
and it also naturally leads to massive stars being centrally concentrated in clusters,
as observed (Bonnell et al. 2001b). A key issue for competitive accretion is, What
is the level of turbulence in the ambient medium? There is general agreement that
competitive accretion is ineffective if the medium has turbulent energy comparable to
gravitational energy, with αvir order unity (see Equation 11), whereas it is effective if
the turbulence is sufficiently weak, αvir � 1 (Bonnell et al. 2001a; Krumholz, McKee
& Klein 2005a; magnetic fields, which tend to suppress accretion, have not been
considered yet). Bonnell and his collaborators (Bonnell & Bate 2006 and references
therein) argue that the gas throughout star-forming clumps has a very low turbulent
velocity so that protostars in clusters can accrete efficiently. However, Krumholz,
McKee & Klein (2005a) argue that stellar feedback and the cascade of turbulence
from larger scales ensure that the star-forming clumps are sufficiently turbulent to
be approximately virialized and to therefore have negligible competitive accretion.
Analysis of data from several star-forming clumps shows that stars in these clumps
could grow by only 0.1−1% in a dynamical time; this is far too small to be signif-
icant. The timescale for the formation of star clusters is an important discriminant
between these models: Star clusters form in about 2tff if turbulence is allowed to decay
(Bonnell, Bate & Vine 2003), whereas it can take significantly longer if turbulence
is maintained (Bonnell, Bate & Vine 2003). The observational evidence discussed by
Tan, Krumholz & McKee (2006) and Krumholz & Tan (2007) favors the longer for-
mation time. This controversy can be resolved through more detailed observations
of gas motions in star-forming clumps and through more realistic simulations that
allow for the evolution of the turbulent density fluctuations as the clump forms and
evolves to a star-forming state, and that incorporate stellar feedback.

4.1.3. Observations of low-mass star formation. The growth of protostars can
be inferred through observations of the mass distribution surrounding the protostar,
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the velocity distribution of this circumstellar gas, and the nonstellar radiative flux.
The mass and/or temperature distribution on both small and large spatial scales can
be inferred by modeling the spectral energy distribution (SED) of the continuum.
Protostellar SEDs are conventionally divided into four classes, which are believed to
represent an evolutionary progression [Myers et al. (1987) divided sources into two
classes; Lada (1987) introduced Classes I–III; Adams, Lada & Shu (1987) discussed
a similar classification; and André, Ward-Thompson & Barsony (1993) introduced
Class 0]. André, Ward-Thompson & Barsony (2000) have summarized the classifica-
tion scheme:

Class 0: Sources with a central protostar that are extremely faint in the optical and
near-IR (i.e., undetectable at λ < 10 μ with the technology of the 1990s) and
that have a significant submillimeter luminosity, Lsmm/Lbol > 0.5%. Sources
with these properties have Menvelope � m∗. Protostars are believed to acquire a
significant fraction, if not most, of their mass in this embedded phase.

Class I: Sources with αIR > 0, where αIR ≡ d log λFλ/d log λ is the slope of the
SED over the wavelength range between 2.2 μ and 10–25 μ. Such sources are
believed to be relatively evolved protostars with both circumstellar disks and
envelopes.

Class II: Sources with −1.5 < αIR < 0 are believed to be pre-main-sequence stars
with significant circumstellar disks (classical TTSs).

Class III: Sources with αIR < −1.5 are pre-main-sequence stars that are no longer
accreting significant amounts of matter (weak-lined TTSs).

These classes can also be defined in terms of the bolometric temperature, which is
the temperature of a black body with the same mean frequency as the SED of the
YSO (Myers & Ladd 1993).

Unfortunately, the geometry of the source can confound this classification scheme
(e.g., Masunaga & Inutsuka 2000). It is well recognized that a given source can appear
as a Class II source at small or moderate inclination angles (so that the central star
is visible) and as a Class I source at large inclination angles (so that the central
source is obscured by the disk). A similar ambiguity can involve Class 0 sources if
the protostellar envelope is flattened owing to the presence of a large-scale magnetic
field or contains cavities created by protostellar jets. White et al. (2007) summarize
the observational evidence that many of the properties of Class I and Class II sources
are similar, which is consistent with inclination effects confusing the evolutionary
interpretation of the SEDs. This ambiguity can be alleviated by radio or submillimeter
observations of the envelopes, which yield masses that are independent of inclination;
Motte & André (2001) find that about 40% of the sources in Taurus that are classified
as Class I on the basis of their SEDs have envelope masses <0.1 M� and are thus
unlikely to be true protostars. More sophisticated modeling of the SEDs can also
clarify the evolutionary sequence of YSOs; for example, Robitaille et al. (2006) have
calculated 2 × 105 model SEDs, including the effects of outflow cavities, that can be
automatically compared with observed SEDs to infer the properties of the source.
Counts of sources at different evolutionary stages together with an estimate for the
age for one of the stages allows one to infer the lifetimes for all the stages. Typical

634 McKee · Ostriker



ANRV320-AA45-13 ARI 26 July 2007 14:49

estimates for the ages are 1 − 2 × 105 years for Class I sources and 1 − 3 × 104 years
for Class 0 sources (André, Ward-Thompson & Barsony 2000).

There is a significant discrepancy between the protostellar accretion rates that are
observed and those that are expected, resulting in the so-called luminosity problem
(Kenyon et al. 1990). The luminosity due to accretion onto the star is

Lacc = facc
Gm∗ṁ∗

R∗
= 3.1 facc

(
m∗

0.25 M�

) (
ṁ∗

10−6 M� year−1

) (
2.5 R�

R∗

)
L�, (49)

where facc is the fraction of the gravitational potential energy released by accretion,
the rest being carried off in a wind or absorbed by the star (e.g., Ostriker & Shu
1995), 0.25 M� is the typical mass of a protostar (i.e., half the mass of a typical star),
and 2.5 R� is the corresponding radius (Stahler 1988). There are two main ways to
estimate the expected average accretion rate, 〈ṁ∗〉. (a) Because both the mass ejected
from the disk and the mass stored in the disk are generally a small fraction of the stellar
mass (see Section 4.2), the average accretion rate 〈Ṁ∗〉 should be comparable to the
infall rate ṁin. Theoretically, for T = 10 K, this is ṁin = 1.5 × 10−6 εcoreφin M�
year−1 (Equations 43, 44). If the fraction of the core mass that goes into the star is
εcore � 1/3 (Matzner & McKee 2000; Alves, Lombardi & Lada 2007), and if the
envelope infall rate is that expected from rotating, magnetized collapse (φin � 5—
Krasnopolsky & Königl 2002), then the infall rate is ṁin � 2.5 × 10−6 M� year−1.
Observationally, the properties of the envelopes around Class I objects inferred from
the SEDs give similar infall rates (Kenyon, Calvet & Hartmann 1993), so this estimate
for εcoreφin cannot be too far off. (b) A direct estimate of the average accretion rate is
that forming a 0.5 M� star in 2 × 105 years, the estimated upper limit on the duration
of the embedded stage, requires 〈ṁ∗〉 = 2.5 × 10−6 M� year−1, comparable to the
estimated infall rate. The average luminosity corresponding to this accretion rate is
〈L〉 � 8 L�. The problem is that the observed median luminosity of the bona fide
Class I sources (i.e., those with significant molecular envelopes) in Taurus is about
0.5−1 L� (White & Hillenbrand 2004 and Motte & André 2001, respectively), almost
an order of magnitude smaller. The problem is significantly worse than this, however,
as only a small fraction of the luminosity is due to accretion (Muzerolle, Hartmann &
Calvet 1998); White & Hillenbrand (2004) find that the fraction is about 25%. The
clearest statement of the luminosity problem is as an accretion rate problem: The
observed accretion rates in Class I protostars are 1–2 orders of magnitude smaller
than those needed to form a star during the lifetime of a Class I object.

Kenyon et al. (1990) suggested two solutions to this problem. One solution is that
significant accretion continues into the T Tauri stage, but this appears to be ruled
out by the fact that such stars accrete very slowly (10−8 M� year−1; see Section 4.2.1),
and there is not a significant disk or envelope mass reservoir that they can draw on
for episodic accretion. The other solution is that most of the accretion occurs in
the embedded stage, but it is episodic, so that the median accretion rate is much
smaller than the mean. They suggested that the high accretion-rate stage of proto-
stellar accretion could correspond to FU Orionis objects, which are very luminous
(typically 200 − 800 L�—Hartmann & Kenyon 1996) and have have accretion rates
∼10−4 M� year−1. Such outbursts could be due to thermal instability (Bell & Lin
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1994, Bell et al. 1995), although this would only affect the inner disk, and hence the
outburst would be limited in duration and total mass accreted; or to gravitational in-
stability in the disk (see Section 4.2.2 and Vorobyov & Basu 2005b, 2006). However,
Hartmann & Kenyon (1996) estimate that the observed FU Ori objects can account
for only about 5 − 20% of the mass of stars forming in the solar vicinity; this dis-
crepancy has not disappeared in the intervening decade. Recent observational studies
of the central stars in Class I sources differ on their evolutionary status: White &
Hillenbrand (2004) argue that the Class I protostars are similar to TTSs and are thus
past the main protostellar accretion phase, whereas Doppmann et al. (2005) come to
the opposite conclusion. If protostars are close to their final mass by the time they
become Class I sources, then they must gain most of their mass in the Class 0 stage.
In this case the luminosity problem remains, albeit in a milder form: The mean accre-
tion rate required to form a 0.5 M� star in 3 × 104 years (the estimated upper limit
on the lifetime of a Class 0 source—André, Ward-Thompson & Barsony 2000) is
1.7 × 10−5 M� year−1, corresponding to 〈L〉 � 50 facc(2.5 R�/R∗) L�; by contrast,
the median luminosity of the Class 0 sources listed by André, Ward-Thompson &
Barsony (2000) is about 10 L�. This luminosity problem could be alleviated if a sig-
nificant fraction of the accretion energy is carried off by the powerful protostellar
outflows that accompany these sources, so that facc � 1/2. However, accounting for
a value of the infall rate as high as the inferred accretion rate onto the star remains
a theoretical challenge: The magnetized collapse models discussed above give infall
rates of a few ×10−6 M� year−1 (for εcore ∼ 1/3), significantly less than required. A
resolution of the luminosity problem thus remains elusive.

Spectroscopic observations using molecular transitions can give both the mass and
velocity distributions in collapsing cores (Myers, Evans & Ohashi 2000), but to date
the spatial resolution of these data is generally �100 AU. Evidence for infall in unre-
solved cores is provided by the infall asymmetry (Lucas 1976, Leung & Brown 1977,
Myers et al. 1996): optically thick, infalling gas in which the excitation temperature
rises toward the center produces a characteristic line profile in which the blue wing
is stronger than the red wing. Observations of samples of starless cores (Lee, Myers
& Tafalla 1999, 2001), Class 0 sources (Gregersen et al. 1997), and Class I sources
(Gregersen et al. 2000) show a blue excess [(blue asymmetries—red asymmetries)/
(number of sources)] of about 0.25 − 0.35, indicating that many of these sources are
undergoing collapse (Myers, Evans & Ohashi 2000). Unfortunately, it has proven
difficult to carry out unambiguous observational tests of the theoretical models for
protostellar accretion. Furuya, Kitamura & Shinnaga (2006) mapped the infall in
a young Class 0 source and found reasonably good agreement with the Larson-
Penston-Hunter solution (φin � 20 in Equation 43); this source appears to be very
young, because for r > 100 AU there is no evidence for the ρ ∝ r−3/2 density pro-
file expected for accretion onto a protostar of significant mass. Tafalla et al. (1998)
and Lee, Myers & Tafalla (2001) found that infall is more extended than expected
in inside-out collapse models, although this infall may reflect the formation of small
clusters rather than individual stars. They also found that the infall velocity is faster
than expected in standard ambipolar diffusion models; however, the velocities are
consistent with the collapse of magnetically supercritical cores (Ciolek & Basu 2000).
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A potentially important result is that Ohashi et al. (1997) found that cores in Tau-
rus are in solid body rotation on scales �0.03 pc but conserve angular momentum
on smaller scales. The physical significance of this length scale could be inferred by
determining its value in other molecular clouds.

4.1.3.1. Brown dwarfs. Because brown dwarfs represent the low-mass extreme of
star formation, they can shed light on the earliest stages of star formation. As a result
of a great deal of observational work over the past decade, it has been established
that most brown dwarfs form by the same mechanism as most stars (Luhman et al.
2007, Whitworth et al. 2007): the IMF, velocity and spatial distributions at birth,
multiplicity, accretion rates, circumstellar disks, and outflows are all continuous ex-
tensions of those for hydrogen-burning stars. This is to be expected, as stars near the
H-burning limit at 0.075 M� reach their final mass long before hydrogen burning
commences. Following Whitworth et al. (2007) and Chabrier et al. (2007), we shall
assume that brown dwarfs form by gravitational instability on a dynamical timescale,
and that their composition reflects that of the ambient ISM. By contrast, planets are
believed to form in circumstellar disks and to have an elemental composition with
an excess of heavy elements. With these definitions, the observational distinction be-
tween giant planets with masses �MJ and small brown dwarfs is somewhat indistinct,
but should eventually be amenable to spectroscopic determination (Chabrier et al.
2007). The lower limit to the mass of a brown dwarf is set by the condition that the
star becomes opaque to the radiation it emits while undergoing gravitational collapse
(Low & Lynden-Bell 1976); including helium, this is about 4 × 10−3 M� � 4 MJ

(Whitworth et al. 2007). The smallest brown dwarfs detected to date have masses
∼(0.01 − 0.02) M� (Luhman et al. 2007).

In order for a brown dwarf to form, its mass must exceed the Bonnor-Ebert
mass, even if it forms via shock compression (Elmegreen & Elmegreen 1978); the
pressure at the surface of the core that forms the brown dwarf must therefore be
P/kB � 109(T/10 K)4(10−2 M�/mBD)2 K cm−3. Assuming that brown dwarfs form
by turbulent fragmentation, Padoan & Nordlund (2004) show that such pressures can
be reached in a large enough fraction of the mass of the cluster IC348 to account for
the brown dwarfs observed there. This model is based on the asumption that the gas is
isothermal and that as a result the density PDF is a log-normal distribution (Equation
5). The remaining mystery is, Why is the IMF of brown dwarfs relatively constant
(at least to within a factor of two) when their numbers are exponentially sensitive to
the mean of the log-normal distribution, which depends on the Mach number at the
largest scale in the cloud? This is part of the larger mystery as to why the IMF appears
to be universal, but in the brown dwarf regime the exponential sensitivity to ambient
conditions potentially offers an opportunity to determine how ambient conditions
affect the IMF.

Whitworth et al. (2007) review a number of other mechanisms for brown dwarf
formation that could contribute in some cases:

1. Hierarchical fragmentation: Protostellar cores can fragment as they collapse,
and indeed this process is believed to lead to the formation of binary and mul-
tiple star systems (Section 4.1.3). Simulations are as yet inadequate to evaluate
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the effectiveness of this process in producing brown dwarfs; in particular, it is
important to include proper treatment of the radiative transfer (Boss et al. 2000,
Whitehouse & Bate 2006).

2. Disk fragmentation: Several analyses have shown that fragmentation in disks
around low-mass stars is suppressed for r � 100 AU (Matzner & Levin 2005,
Rafikov 2005, Whitworth et al. 2007), but again accurate treatment of radiative
transfer is essential for quantifying this further. Goodwin & Whitworth (2007)
have suggested that brown dwarfs form in disks beyond 100 AU and that the
resulting binaries are disrupted by passing stars.

3. Premature ejection of protostellar embryos (Reipurth & Clarke 2001): This is a
variant of the hierarchical fragmentation scenario, in which low-mass protostars
that form via fragmentation are ejected before they can accrete enough matter to
reach the hydrogen-burning limit. Reipurth & Clarke (2001) suggested that the
ejected brown dwarfs would have a higher velocity dispersion, a more extended
spatial distribution, and smaller disks than their more massive cousins. This has
not been observed (Luhman et al. 2007), but SPH simulations suggest that in
fact these differences between brown dwarfs and hydrogen-burning stars are
relatively small (Goodwin et al. 2005); more accurate calculations are needed to
determine the magnitude of the differences. A difficulty with the ejection model
is that the cluster simulations that support it produce too many single stars to be
consistent with observation (Goodwin & Kroupa 2005). Observations of BD-
BD binaries can provide a strong test of models for brown dwarf formation,
particularly the ejection model (Burgasser et al. 2007).

4. Photoevaporation: Cores that are close to an O star can undergo a radiation-
driven implosion (Klein, Sandford & Whitaker 1980; Bertoldi 1989); the sub-
sequent equilibrium photoevaporation produces very high pressures (Bertoldi
& McKee 1990). This process may produce brown dwarfs (e.g., Whitworth &
Zinnecker 2004), but more work is needed to determine if the number of such
brown dwarfs is significant.

4.1.3.2. Binaries. Stars are roughly evenly divided between those that are in multi-
ple systems (mainly binaries) and those that are single. For stars of mass ∼1 M�,
Duquennoy & Mayor (1991) found that the fraction of stellar systems that are
multiple—i.e., the ratio of the total number of binaries, triples, etc. divided by the
total number of systems, including single stars—is fmult = 0.58. Multiplicity declines
for smaller masses, and Reid & Gizis (1997) find fmult � 0.3 for stars in the Solar
Neighborhood, which are primarily M stars. Lada (2006) finds a similar result when
one averages over the entire IMF: The majority of stellar systems (as opposed to
the majority of stars) are single. The fraction of singles is smaller at birth, however:
Higher-order multiples (triples, etc.) are often dynamically unstable, and in dense en-
vironments collisions among stellar systems can disrupt wide binaries (Kroupa, Petr
& McCaughrean 1999). Observations summarized by Duchêne et al. (2007) show
that the multiplicity among TTSs in low-density associations such as Taurus-Auriga
and Ophiuchus and among Class I sources in high-density regions such as L1641 in
Orion is about twice as high as among field stars. In dense star-forming regions like
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Orion, however, this excess multiplicity is soon erased—for example, the multiplicity
in the Orion Nebula Cluster (which is older than L1641) is the same as in the field.
This introduces a complication in comparing the CMF with the IMF (Section 3.3):
On average, cores produce more than one star, and the properties of the resulting
stellar systems evolve with time. This is not a major complication, however, because
each core typically produces only 2–3 stars (Goodwin & Kroupa 2005), and the dis-
tribution of secondary masses in typical binaries appears to follow the field star IMF
(Goodwin et al. 2007). It should be noted that the multiplicity of the stars is imprinted
on their spatial distribution: Larson (1995) found a clear break in the density of com-
panions in Taurus at about 0.04 pc, separating binaries and multiple stars from larger
scale clusters.

Binaries raise two important issues in the theory of star formation: What is the
role of binaries in reducing the angular momentum inherited by protostars? What
determines how molecular cores fragment? Binaries do not appear to be effective in
taking up the angular momentum of the initial core: Fisher (2004) has shown that
turbulent molecular cores must lose 99–99.9% of their initial angular momentum
in order to qualitatively account for a number of features of the binary population
with periods �103 days. This angular momentum loss is generally assumed to be
due to magnetic braking (Section 4.1.1), but Jappsen & Klessen (2004) suggest that
gravitational torques can also contribute. Binaries can remove angular momentum on
small scales by ejecting a companion, which hardens the remaining binary. However,
Goodwin & Kroupa (2005) point out two limitations on this process: (a) it tends to
create equal mass binaries, which are not common for typical stars, and (b) it would
create a population of single stars significantly larger than observed.

There is an extensive literature on the fragmentation of protostellar cores into bi-
nary and multiple protostars that is reviewed by Bodenheimer et al. (2000), Duchêne
et al. (2007), and Goodwin et al. (2007). Simulations of fragmentation are very chal-
lenging because of the enormous range of scales involved, and it does not appear that
any of the simulations carried out to date have enough resolution and enough physics
(i.e., including MHD and radiative transfer) to adequately address the problem (Klein
et al. 2007). In particular, a number of simulations produce 5–10 fragments per core,
whereas observations show that most cores produce only 2–3 fragments (Goodwin
& Kroupa 2005).

4.2. Disks and Winds

4.2.1. Observations of disks. Because protostellar cores are rotating, collapse with
conservation of angular momentum results in the formation of a centrifugally-
supported disk (Section 4.1.1). Observed sizes and rotation parameters for low-mass
dense cores predict disk sizes �1000 AU, consistent with high-resolution submillime-
ter continuum observations that indicate average (dust) disk sizes around TTSs of
≈200 AU (Andrews & Williams 2006); similar results are obtained using millimeter
interferometry (Kitamura et al. 2002). The disks around T Tauri disks extend inward
to ∼0.04 AU based on modeling of observed CO vibrational emission lines (Najita
et al. 2006); these inner radii are smaller than the inner disk radii inferred for dust
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disks, presumably because the dust sublimates. The initial sizes of circumstellar disks
are more difficult to determine, because protostellar systems in the earliest stages
(prior to the T Tauri stage) are still enshrouded in dusty envelopes that emit at simi-
lar wavelengths to the disk; in a few cases where the inner envelope emission can be
spatially separated out, disk sizes appear similar (e.g., Jørgensen et al. 2005).

Masses of protostellar disks are estimated using the continuum flux in millimeter
and submillimeter wavelengths. The first disk mass estimates for TTSs were ob-
tained from observations of the total flux at a single millimeter wavelength under the
assumption of optically thin emission (e.g., Beckwith et al. 1990), but subject to an
uncertainty in the overall normalization owing to the uncertainty in the dust opacity
coefficient [because Mdisk ∝ Fν/(ν2κν )]. Multiwavelength (submillimeter to centime-
ter) observations suggest that the dust opacity law κν ∝ νβ has a distinctly shallower
slope β than holds for dust in the diffuse ISM, presumably owing to grain growth
(e.g., Beckwith & Sargent 1991; Beckwith, Henning & Nakagawa 2000). Interpre-
tation of the multiwavelength flux data as implying a change in β is complicated by
the fact that some of the short-wavelength emission can be optically thick (which
yields Fν ∝ ν2 independent of β for a disk that is optically thick at all ν). However,
spatially resolved observations can be combined with modeling to correct for opti-
cally thick contributions varying with ν and R, with the resulting median being β � 1
(e.g., Natta et al. 2007, Andrews & Williams 2007, Lommen et al. 2007), suggesting
that the largest grains are in fact centimeter-size pebbles (e.g., Wilner et al. 2005,
Rodmann et al. 2006). Total disk masses for T Tauri systems are estimated to be in
the range ∼10−3−10−1 M� with a median near 0.005 M� from submillimeter obser-
vations (e.g., Andrews & Williams 2005), but these may severely underestimate the
true masses if a large fraction of the grains have grown to millimeter or centimeter
sizes and thus emit only weakly in the submillimeter (Hartmann et al. 2006, Natta
et al. 2007). Determining the distribution of mass within disks is difficult because sub-
millimeter emission is likely optically thick in the inner regions, whereas at longer
wavelengths there is insufficient resolution to probe the inner-disk regions (Andrews
& Williams 2007). Finally, we note that disk mass determinations assume a cosmic
ratio of gas to dust; at late evolutionary stages, photoevaporation may preferentially
remove gas, and planet formation may preferentially remove dust.

The thermal structure of protostellar disks is likely quite complex. Disks can be
heated both externally via irradiation from the central star, and internally from dis-
sipation and thermalization of orbital kinetic energy as the gas accretes (Calvet et al.
1991, Chiang & Goldreich 1997). As a consequence, the vertical temperature distri-
bution depends on details of the system and can have a local minimum at intermediate
altitude (D’Alessio et al. 1998). The vertical temperature distribution together with
its dependence on radius must be self-consistently calculated, because the flaring of
the disk surface affects the amount of radiation intercepted from the central star
(see discussion and references in Dullemond et al. 2007). In addition, gas and dust
temperatures may differ in the upper atmospheres where the densities are low and
stellar X rays strongly heat the gas (Najita et al. 2006). Quite sophisticated radial-
vertical radiative models (including grain growth and settling) have been developed
that agree well with observed SEDs from micrometer to millimeter wavelengths [see
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e.g., Dullemond & Dominik (2004), D’Alessio et al. (2006) and references therein].
The IR emission signatures, including PAH features at 3 − 13 μ and edge-on silhou-
ette images, as well as scattered-light/polarization observations in optical and near-IR
frequencies, indicate that although some grains have grown to large sizes, small grains
still remain in disk atmospheres (see references and discussion in Dullemond et al.
2007 and Natta et al. 2007).

Disk lifetimes are inferred based on stellar ages combined with IR and millimeter/
submillimeter emission signatures, which are sensitive to warm dust. Multi-
wavelength Spitzer observations of the nearby star-forming cluster IC 348 (Lada
et al. 2006) show that for ∼70% of stars, disks have become optically thin in the
IR (implying inner disks R � 20 AU have been removed) within the 2- to 3-Myr
age of the system; disk fractions are slightly higher (∼50%) for Solar-type stars than
in those of higher or lower mass; observations of other clusters are consistent with
these results (Sicilia-Aguilar et al. 2006a). L-band observations of disk frequencies in
clusters spanning a range of ages (Haisch, Lada & Lada 2001) suggests that overall
disk lifetimes are ≈6 Myr. Even in the 10-Myr-old cluster NCG 7160, however, a few
percent of stars still show IR signatures of disks (Sicilia-Aguilar et al. 2006a), and disk
lifetimes appear to be inversely correlated with the mass of the star (Hernandez et al.
2007). Signatures (or their absence) of dusty disk emission are also well correlated
with evidence (or lack) of accretion in gaseous emission line profiles (see below) in
systems at a range of ages, indicating that gas and dust disks have similar lifetimes
( Jayawardhana et al. 2006, Sicilia-Aguilar et al. 2006b). Andrews & Williams (2005)
found, for a large sample of YSOs in Taurus-Auriga, that in general those systems
with near-IR signatures of inner disks also have submillimeter signatures of outer
disks, and vice versa; they conclude that inner and outer disk lifetimes agree within
105 years.

Accretion in YSO systems is studied using a variety of diagnostics (see e.g., Calvet,
Hartmann & Strom (2000)), including continuum veiling of photospheric absorption
lines and optical emission lines, which are respectively believed to arise from hot
(shocked) gas on the stellar surface and from gas that is falling onto the star along
magnetic flux tubes. Gullbring et al. (1998) measured a median accretion rate for
million-year-old TTSs of ∼10−8 M� year−1, and White & Ghez (2001) found similar
accretion rates for the primaries in T Tauri binary systems. A recent compilation of
observations (White & Basri 2003, Muzerolle et al. 2003, Calvet et al. 2004) shows an
approximate dependence of the accretion rate on stellar mass Ṁdisk ∝ m2

∗, although
with considerable scatter (Muzerolle et al. 2005). This scaling of the accretion rate
with stellar mass is potentially explained by Bondi-Hoyle accretion from the ambient
molecular cloud (Padoan et al. 2005). However, such a model accounts only for the
infall rate onto the star-disk system, not the disk accretion rate; these need not agree.
In addition, it does not account for the accretion seen in TTSs outside molecular
clouds (Hartmann et al. 2006). During their embedded stages (a few ×105 years),
low-mass stars have typical disk accretion rates similar to or slightly larger than those
of T Tauri Stars (TTSs) (White et al. 2007). As discussed in Section 4.1.3, the infall
rates from protostellar envelopes typically exceed disk accretion rates by a factor of
10–100, so it is possible that mass is stored in the disk and released intermittently,
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in brief but prodigious accretion events similar to FU Ori outbursts (Kenyon et al.
1990, Hartmann & Kenyon 1996).

For high-mass protostars, observations suggest that there are at least two classes of
disks (Cesaroni et al. 2007). In moderate-luminosity sources corresponding to B stars
(L� a few ×104 L�), the disks appear to be Keplerian, with masses significantly less
than the stellar mass and timescales for mass transfer ∼105 years. In luminous sources
(L � 105 L�), the disks are large (4 − 30 × 103 AU) and massive (60 − 500 M�).
Consistent with the discussion in Sections 4.1.1.1 and 4.1.1.2 , the disks are observed
to be non-Keplerian on these large scales. To distinguish these structures from the
disks observed around B stars, Cesaroni (2005) terms them toroids. The inferred
infall rates in these disks are of order 2 × 10−3 −2 × 10−2 M� year−1, corresponding
to mass transfer timescales of order 104 years (Zhang 2005). In view of their large
size and mass, they may be circumcluster structures rather than circumstellar ones.
Indeed, one of the best studied luminous sources, G10.8–0.4, is inferred to have an
embedded cluster of stars with a total mass ∼300 M� (Sollins et al. 2005). Simulations
of the formation of an individual massive star in a turbulent medium give a disk
size ∼103 AU, significantly smaller than the size of the toroids (Krumholz, Klein &
McKee 2005). To date, no disks have been observed in the luminous sources on scales
�103 AU. Most likely, this is because of the observational difficulties in observing
such disks; it should be borne in mind, however, that there is no direct evidence that
these sources are in fact protostellar. Including disks around both B stars and the
toroids around luminous sources, Zhang (2005) finds that the mass infall rate in the
disks scales as Ṁdisk ∝ m2.2

∗ , although there are substantial uncertainties in the data
for the luminous sources.

4.2.2. Accretion mechanisms. The most fundamental theoretical question about
YSO disks is what makes them accrete; although many mechanisms have been inves-
tigated, the problem is still open. In large part this is because the accretion process
depends on a complicated interplay of MHD, radiative transfer, chemistry, and even
solid state physics. The MHD is itself nonideal, because the medium is partially ion-
ized, and in addition self-gravity is important in many circumstances. Self-gravity
effects and the level of electrical conductivity are very sensitive to thermal and ion-
ization properties, which in turn are determined by chemistry and radiative transfer
(including X-rays and cosmic rays), and the latter are strongly affected by grain prop-
erties that evolve in time due to sticking and fragmentation. Compounding the diffi-
culty imposed by the interactions among the physical processes involved is the lack of
exact knowledge of initial and boundary conditions: How does collapse of the rotating
protostellar core shape the distribution of mass in the disk, starting from the initial
disk-building stage and continuing (although at a reduced rate) with later infall? Fi-
nally, there is the difficulty imposed by the huge dynamic range in space and time; disks
themselves span a range of ∼ 104 in radius and 106 in orbital period, while the small
aspect ratio H/R � 1 (where H is the scale height of the disk) implies a further exten-
sion in dynamic range is required for numerical models that resolve the disk interior.

Processes proposed to transport angular momentum in YSO disks generally fall
into one of three categories: purely hydrodynamic mechanisms, MHD mechanisms,
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and self-gravitating mechanisms (e.g., see the reviews of Stone et al. 2000 and Gammie
& Johnson 2005). Within the past decade, it has become possible to investigate mech-
anisms in each class using high-resolution time-dependent numerical simulations in
two and three dimensions, in which the stresses that produce transport are explic-
itly obtained as spatial correlations of component velocities, magnetic fields, and
the density and pressure for a self-consistent flow. Prior to the computational rev-
olution that made these investigations possible, and continuing into the present for
modeling in which large radial domains and long-term evolution is required, many
studies have made use of the so-called alpha prescription for angular momentum
transport. In this approach (Shakura & Sunyaev 1973, Lynden-Bell & Pringle 1974,
Pringle 1981), a stress tensor is defined that yields an effective viscous torque between
adjacent rings in a differentially rotating disk. On dimensional grounds, and using
the fact that the shear stress should be zero for solid-body rotation, this stress can
be written as TR,φ ≡ −αPd ln �/d ln R; i.e., the effective kinematic viscosity is taken
to obey ν ≡ ασ 2

th/� = ασth H. This effective viscosity Ansatz makes it possible to
study disk evolution with a purely hydrodynamic, 1D model. Although the α-model
approach has been essential to progress on modeling disk observables, it is limited in
its ability to capture realistic dynamics because the coefficient is arbitrary (and usually
taken as spatially constant) and the adopted functional form for TR,φ , though dimen-
sionally correct, may not reproduce the true behavior of nonlinear, time-dependent,
3D flows (e.g., see Ogilvie 2003; Pessah, Chan & Psaltis 2007, submitted). For a
Keplerian disk, −d ln �/d ln R = 3/2 and in steady state the mass accretion rate is
Ṁdisk = 3π�ν = 3π�ασ 2

th/�; i.e., the ratio of radial inflow speed to orbital speed
is (vR/vφ) = (3/2)α(σth/vφ)2 = (3/2)α(H/R)2. Observed accretion rates of TTSs
require α ∼ 10−2 (Hartmann et al. 1998). Because the effective viscosity is equal to
a characteristic length scale for angular momentum transport times at characteristic
transport speed, the empirically determined viscosity corresponds to a few percent of
the value that would be obtained if transport occurred at sonic speeds over distances
comparable to the scale height of the disk.

Using the infall rate scaling of Equation 43, the ratio of the disk accretion rate to
the infall rate is:

Ṁdisk

ṁin
∼ α

φin

(
Mdisk

m∗

) (
R
H

) (
Tdisk

Tcore

)3/2

, (50)

where we have assumed that the gravitational potential is dominated by the star. The
outer-disk temperature is not much larger than the temperature in the core, and
R/H ∼ 10 for the outer disk, so the disk accretion rate is much lower than the infall
rate unless Mdisk/m∗ or α/φin exceeds ∼0.1. This is not the case for TTSs, but during
the embedded stages the disk masses may be larger, and (possibly as a consequence
of larger Mdisk and self-gravity; see below) the values of α may be larger as well.

4.2.2.1. Hydrodynamic mechanisms. The simplest transport mechanisms would be
purely hydrodynamic. Turbulence generated either through convection (owing to
vertical or radial entropy gradients), through shear-driven hydrodynamic instabil-
ities, or through external agents (such as time-dependent, clumpy infall) could in
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principle develop velocity field correlations 〈ρδvRδvφ〉 of the correct sign (>0) to
transport angular momentum outward. Ryu & Goodman (1992) showed, however,
that convective modes tend to transport angular momentum inward, rather than out-
ward, and Stone & Balbus (1996) confirmed from 3D numerical simulations with
turbulence driven by convection that angular momentum transport is inward. Con-
vection driven by radial entropy gradients also transports angular momentum inward
and is generally stabilized by differential rotation ( Johnson & Gammie 2006).

Several analytic studies have shown that purely hydrodynamic disturbances in
Keplerian-shear disks are able to experience large transient growth (Chagelishvili
et al. 2003; Klahr 2004; Umurhan & Regev 2004; Johnson & Gammie 2005a;
Afshordi, Mukhopadhyay & Narayan 2005), especially for the case of 2D (i.e., z-
independent) columnar structures. Conceivably, transient growth of sheared waves
could lead to self-sustained turbulence with outward transport of angular momen-
tum, if new leading wavelets could be continually reseeded in the flow via nonlinear
interactions (Lithwick 2007, submitted). Although transient growth is indeed seen in
2D (R − φ) numerical simulations, it is subject to secondary Kelvin-Helmholtz in-
stability that limits the growth when |kRδvφ |/� � 1 (Shen, Stone & Gardiner 2006).
The turbulence that results also appears to decay without creating leading wavelets
to complete the feedback loop, but this may be due to limited numerical resolution.
Other numerical evidence, together with analytic arguments, suggest that nonlin-
ear shear-driven hydrodynamic instabilities are unable to maintain turbulence for
Rayleigh-stable rotational profiles (in which angular momentum increases outward,
i.e., κ2/�2 = 2d ln(�R2)/d ln R > 0) (Balbus, Hawley & Stone 1996; Hawley, Balbus
& Winters 1999). Because simulations using the same numerical methods show that
analogous Cartesian shear flows do exhibit nonlinear instability, rotating systems are
presumably stabilized by Coriolis forces and the epicyclic motion that results. One
potential concern is that the effective Reynolds numbers of numerical experiments
are too low to realize nonlinear shear-driven instabilities and self-sustained turbu-
lence. Very recently, however, Ji et al. (2006) reported from laboratory experiments
at Reynolds numbers up to millions that hydrodynamic flows with Keplerian-like
rotation profiles in fact show extremely low levels of angular momentum transport,
corresponding to α < 10−6.

Although it may be difficult to grow perturbations from instabilities in uniform
Keplerian disks, it is still possible that disks are born with large internal perturbations,
and that ongoing infall at all radii can continually resupply them. Simulations have
shown that 2D disks with nonuniform vorticity tend to develop large-scale, persistent
vortices that are able to transport angular momentum outward (Umurhan & Regev
2004, Johnson & Gammie 2005b). Three-dimensional simulations, however, show
that vortex columns tend to be destroyed (Barranco & Marcus 2005; Shen, Stone
& Gardiner 2006). Although off-midplane vortices can be long-lived (Barranco &
Marcus 2005), the angular momentum transport in 3D simulations is an order of
magnitude lower than for the 2D case (Shen, Stone & Gardiner 2006) and secularly
decays. Further investigation of this process is needed, and it is particularly important
to assess whether vorticity can be injected at a high enough rate to maintain the
effective levels of α ∼ 10−2 needed to explain observed TTS accretion.
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4.2.2.2. MHD mechanisms. The introduction of magnetic fields considerably alters
the dynamics of circumstellar disks. The realization by Balbus & Hawley (1991)
that weakly or moderately magnetized, differentially rotating disks are subject to a
powerful local instability—now generically referred to as the MRI—revolutionized
the theory of accreting systems. Early axisymmetric numerical simulations showed
robust growth and development of the so-called channel solution (Hawley & Balbus
1991), whereas 3D numerical simimulations showed emergence of quasi-steady state
saturated turbulence (Brandenburg et al. 1995; Hawley, Gammie & Balbus 1995;
Matsumoto & Tajima 1995) in which the angular momentum transport is outward and
is dominated by the magnetic stresses 〈−BR Bφ/(4π )〉. Much effort has been devoted
to exploring the MRI as a basic mechanism driving accretion in a variety of systems;
Balbus & Hawley (1998) and Balbus (2003) summarize many of these developments.
The effective value of α depends on the mean vertical magnetic flux, which presumably
evolves over long timescales, and can easily exceed 0.1 (e.g., Hawley, Gammie &
Balbus 1996; Stone et al. 1996; Sano et al. 2004).

Although MRI almost certainly plays an important role in driving accretion in
YSO systems, it is not a magic bullet. The difficulty is that substantial portions of
these disks may have ionization too low for MRI to be effective (Gammie 1996; Jin
1996; Glassgold, Najita & Igea 1997; D’Alessio et al. 1998; Igea & Glassgold 1999),
creating a “dead zone.” A critical review of the requirements for MRI to develop
in partially ionized disks is given in Gammie & Johnson (2005); Ohmic diffusion
appears to be the main limiting effect, with the saturated-state value of α dropping
when v2

A,z/η� � 1 where η is the resistivity (Sano & Stone 2002; Turner, Sano &
Dziourkevitch 2006). In the very innermost parts of YSO disks (R � 0.1 AU), alkali
metals are collisionally ionized where the stellar irradiation maintains the temperature
above ∼2000 K, so MRI can operate. In the outer disk (beyond several AU), and in the
mid-disk’s surface layers, column densities are low enough (� < �a ∼ 100 g cm−2)
that X rays or cosmic rays can penetrate the disk to ionize it. (For comparison, the
surface density in the minimum Solar nebula is � = 1700(R/AU)−1.5 g cm−2—
Hayashi, Nakazawa & Nakagawa 1985.) Unfortunately, the extent of the MRI-active
region in the outer disk is very sensitive to the presence and size distribution of dust
particles; if small grains are present and well-mixed, the active region is quite limited,
whereas it can become very large if all the dust is incorporated in large particles or
settles to the midplane (Sano et al. 2000; Fromang, Terquem & Balbus 2002; Desch
2004; Salmeron & Wardle 2005). Even if ionizing radiation is limited to the surface
layers by high total disk columns, if small grains are absent (an extreme assumption)
the gas-phase recombination rate is low enough such that turbulence with rapid
vertical mixing can maintain non-negligible ionization in the interior. Turner, Sano
& Dziourkevitch (2007) have shown, using direct numerical simulations, that the
dead zone can be effectively eliminated in this (optimistic) scenario; though the very
center of the disk at 1 AU is not unstable to MRI, the interior is still conductive
enough that magnetic fields generated nearer the surface can induce accretion in the
midplane.

One of the possible consequences of spatially varying conductivity in disks is that
the accretion rate will, in general, vary with radius. If only a surface layer �a is active,
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in the sense of being sufficiently conductive to support MRI with effective viscosity
coefficient αa , then the accretion rate in that layer will be Ṁa = 3π�aαaσ

2
th/�.

Because �a varies slowly with radius (for the case of external ionization) while the
combination σ 2

th/� tends to decrease inward, dropout from the accretion flow can
accumulate within the dead zone that is sandwiched between active layers (Gammie
1996). If the dead zone remains completely inactive, then matter will build up un-
til it becomes dynamically unstable and begins to transport angular momentum by
gravitational stresses (see below), potentially leading to transient bursts of accretion
(Gammie 1996; Armitage, Livio & Pringle 2001).

Finally, we note that MHD winds (see Section 4.2.5) may remove angular mo-
mentum from disks, driving the matter remaining in the disk to accrete in order to
maintain centrifugal balance. The angular momentum deficit is tranferred to the disk
by magnetic stresses, so that only the matter that is well-coupled to magnetic fields
will be affected. Thus, the above considerations regarding ionization also apply to
wind-driven accretion.

4.2.2.3. Self-gravitational mechanisms. Accretion disks that have sufficiently small
values of the Toomre parameter Q = κσth/(πG�) ∼ (H/R)(m∗/Mdisk) are subject
to nonlinear growth of density perturbations via the swing amplifier (see Sections
2.2, 3.2.1). Then, in addition to hydrodynamic Reynolds stresses 〈ρvRvφ〉 and MHD
Maxwell stresses 〈BR Bφ/(4π )〉, gravitational Newton stresses 〈gRgφ/(4πG)〉 (where
g = −∇�) also contribute to the radial transport of angular momentum. Gammie
(2001) showed that if the disk is in equilibrium such that cooling removes the
energy dissipated by mass accretion at a rate per unit area �σ 2

th/[(γ − 1)tcool], then
α−1 = (9/4)γ (γ − 1)�tcool, where γ is the effective (2D) adiabatic index (which takes
into account vertical degrees of freedom, and depends on the 3D index and degree
of self-gravity). Numerical simulations with simple cooling prescriptions (constant
tcool�) show that the disk can settle into a self-regulated state with Q near unity
(Gammie 2001, Lodato & Rice 2004, Mejı́a et al. 2005, Rice, Lodato & Armitage
2005), provided that tcool� is not too small (in which case the disk fragments). For
disks that are not externally illuminated, Johnson & Gammie (2003) performed
2D simulations with realistic opacities (and a one-zone vertical radiative transfer
approximation for cooling), and found that the transition between fragmentation
and nonfragmentation lies in the range tcool� = 1−10. The corresponding � at the
transition point increases with �, such that outer disks are the most active regions
gravitationally. Values of α up to 0.5 are possible, with the equilibrium condition pre-
diction satisfied down to tcool� ≈ 3 and α ≈ 0.1. Using a 3D model of a 0.07 M� disk
with realistic cooling, Boley et al. (2006) find a value of α ∼ 0.01 over a large range of
radii >20 AU.

In view of the limitations on α, Cesaroni et al. (2007) argue that accretion rates are
limited to values substantially smaller than inferred for the formation of high-mass
stars (Section 4.3.1). However, Krumholz, Klein & McKee (2007) find that disks
around high-mass protostars can transfer mass inward at the same rate that it falls
in. They carried out simulations of high-mass star formation in a turbulent medium
and included radiative transfer rather than prescribing the heating and cooling rates.
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They found that large amplitude m = 1 modes develop that give effective values of α

of order unity, in qualitative agreement with the isothermal disk results of Laughlin
& Bodenheimer (1994).

Disks that are illuminated sufficiently strongly will have the temperature set by
the external radiation field rather than internal dissipation of energy. In that case,
whether self-gravity is important or not depends essentially on the amount of matter
present in a given region. Where the surface density is high enough so that Q is near
but not below the critical value ≈1.4, self-gravitational stresses will be appreciable
but not so large as to cause fragmentation. Analytic estimates assuming steady state
and accretion heating as well as irradiation (Matzner & Levin 2005, Rafikov 2005)
indicate that fragmentation is only possible in the outer portions of disks, although
more massive disks, around more massive stars, are more subject to fragmentation
(Kratter & Matzner 2006). At temperatures comparable to those in observed sys-
tems, disks with masses �0.1 M� are candidates for having significant mass transport
owing to self-gravitating torques (Mayer et al. 2004). Thus, self-gravity is likely to
be particularly important during the embedded stage of disk evolution, when disk
masses are the largest. Vorobyov & Basu (2005b, 2006) propose, based on results of
2D simulations, that recurrent bursts of accretion owing to self-gravity are likely to
develop during the early stages of protostellar evolution. A number of other results
from models of self-gravitating disk evolution (with an emphasis on criteria for planet
formation through fragmentation) are presented in the review of Durisen et al. (2007).

4.2.3. Disk clearing. Although a large proportion of the mass in the disk ultimately
accretes onto the star, conservation of angular momentum requires that some of the
matter be left behind. MHD winds during the main lifetime of the disk remove some
of this material (see Section 4.2.5). What remains is either incorporated into planets
or removed by photoevaporation. Although planet formation is inextricably coupled
to disk evolution, recent developments in this exciting—and rapidly expanding—field
are too extensive to summarize here. A number of excellent recent reviews appear in
Protostars and Planets V.

Disks can be irradiated by UV and X-ray photons originating either in their own
central stars or in other nearby, luminous stars (see e.g., reviews of Hollenbach,
Yorke & Johnstone 2000 and Dullemond et al. 2007). Extreme UV (EUV) radia-
tion penetrates only the surface layer of the disk, where it heats the gas to ∼104 K
(the ionization and heating depth is determined by the Strömgren condition); FUV
penetrates deeper into the disk (where densities are higher), but heats gas to only
a few 100 K (Hollenbach et al. 1994; Johnstone, Hollenbach & Bally 1998). The
characteristic radial scale in the disk for a thermally driven wind is the gravitational
radius rg = Gm∗μ/(kT), where T is the temperature at the base of the flow. Pressure
gradients enable flows to emerge down to (0.1−0.2)rg (Begelman, McKee & Shields
1983; Adams et al. 2004; Font et al. 2004). EUV-driven winds are most important in
the inner disk, because the gravitational potential there is too deep for FUV-heated
regions at modest temperatures to escape.

Observations discussed above (see also Simon & Prato 1995 and Wolk & Walter
1996) indicate that the inner and outer disks surrounding YSOs disperse nearly
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simultaneously and on a very short (∼105 years) timescale, based on the small num-
ber of transition objects between classical and weak T Tauri systems and the typi-
cal classical TTS lifetimes of a few to several million years. Because the accretion
time of the outer disk itself determines the system lifetime, rapid removal of the
outer disk must be accomplished by other means; photoevaporation is the most nat-
ural candidate. Models of photoevaporation that also include viscous disk evolution
(which allow spreading both inward and outward) have very recently shown that rapid
and near-simultaneous removal of the whole disk indeed occurs (Clarke, Gendrin &
Sotomayor 2001; Alexander, Clarke & Pringle 2006a,b). In this process, the accre-
tion rate declines slowly over time until the photoevaporative mass loss rate at some
location in the inner disk exceeds the rate at which mass is supplied from larger radii.
The inner disk, which is no longer resupplied from outside, then drains rapidly into
the star. At the same time, the radiative flux onto the outer disk grows as it is no
longer attenuated by the inner disk’s atmosphere; the photoevaporation rate in the
outer disk climbs dramatically, and it is removed as well.

4.2.4. Observations of young stellar object jets and outflows. Young stellar sys-
tems drive very powerful winds. The clearest observable manifestations of YSO winds
are the central Herbig-Haro jets consisting of knots of ionized gas (v � 100 km s−1),
and the larger-scale bipolar outflows consisting of expanding lobes of molecular gas
(v ∼ 10 km s−1; see Figure 3). Jet-like outflows (i.e., high-v, narrow molecular struc-
tures) are also observed in some circumstances (see below). The high velocities of jets
indicate that they represent (a part of) the primary wind from the inner part of the
star-disk system, whereas the low velocities and large masses of (broad) molecular
outflows indicate that they are made of gas from the star’s environment that has been
accelerated by an interaction with the wind. In addition to these observed signatures,
there may be significant gas in a large-scale primary wind surrounding the jet, which
remains undectected owing to lower excitation conditions (low density, temperature,
and/or ionization fraction).

Outflows are ubiquitous in high-mass star formation as well as in low-mass star
formation (Shepherd & Churchwell 1996). Outflows from high-mass protostellar
objects (HMPOs) with L < 105 L� (corresponding to m∗ < 25 M�—Arnett 1996)
are collimated (Beuther et al. 2002b), but somewhat less so than those in low-mass
protostars (Wu et al. 2004). In some cases, jets are observed with the outflows, and in
these cases the momentum of the jet is generally large enough to drive the observed
outflow (Shepherd 2005). No well-collimated flow has been observed in a source
with L > 105 L�; as remarked above, disks that are clearly circumstellar have not
been observed in such sources either. Beuther & Shepherd (2005) have proposed
an evolutionary sequence that is consistent with much of these data: A protostar
that eventually will become an O star first passes through the HMPO stage with
no HII region and with a well-collimated jet. When the star becomes sufficiently
massive and close to the main sequence that it produces an HII region, the out-
flow becomes less collimated. The collimation systematically decreases as the star
grows in mass and the HII region evolves from hypercompact to ultracompact (see
Section 4.3.4). The remainder of this section focuses on winds and outflows from
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Figure 3
The HH 111 jet and outflow system. The color scale shows a composite Hubble Space Telescope
image of the inner portion of the jet (WFPC2/visible) and the stellar source region
(NICMOS/IR) (Reipurth et al. 1999). The green contours show the walls of the molecular
outflow using the v = 6 km s−1 channel map from the CO J = 1–0 line, obtained with BIMA
(Lee et al. 2000). The yellow star marks the driving source position, and the grey oval marks
the radio image beam size; the total length of the outflow lobe shown is ≈0.2 pc.

low-mass stars, which have been observed in much greater detail than their high-mass
counterparts.

Recent reviews focusing on the observational properties of jets include those of
Eisloffel et al. (2000), Reipurth & Bally (2001), and Ray et al. (2007). Jets are most
commonly observed at high resolution in optical forbidden lines of O, S, and N,
as well as Hα, but recent observations have also included work in the near-IR and
near-UV. For CTTs, which are YSOs that are themselves optically revealed, observed
optical jets are strongly collimated (aspect ratio at least 10:1, and sometimes 100:1),
and in several cases extend up to distances more than a parsec from the central source
(Bally, Reipurth & Davis 2007). The jets contain both individual bright knots with
bow-shock morphology and more diffuse emission between these knots.

The emission diagnostics from bright knots are generally consistent with heating
by shocks of a few tens of kilometers per second (Hartigan, Raymond & Hartmann
1987; Hartigan, Morse & Raymond 1994), producing postshock temperatures of
Te ≈ 104 K. The electron density ne , ionization fraction xe = ne/nH, and temperature
Te can be estimated using line ratios (Bacciotti & Eislöffel 1999). Analyses of spectra
from a number of jets yields a range of parameters ne = (50 − 3 × 103) cm−3 and
xe = 0.03 − 0.6 so that n = (103 − 105) cm−3 (Podio et al. 2006). The total mass loss
rate in jets Ṁjet, and hence the total jet momentum flux, Ṁjetvjet, can be estimated
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using jet densities and velocities together with an emission filling factor, yielding
Ṁjet = (10−8−10−7) M� year−1 for classical TTSs (Podio et al. 2006). For Class
0 sources, which are much more luminous and have much higher accretion rates,
estimated mass-loss rates in jets based on OI emission (from shocked gas) extend up to
Ṁjet ∼ 10−6 M� year−1 (Ceccarelli et al. 1997). Inferred values of Ṁjet are generally
correlated with estimates of Ṁdisk from veiling (Hartigan, Edwards & Ghandour
1995), with the ratio in the range of 0.05−0.1 (Ray et al. 2007).

The densities and temperatures obtained from jet diagnostics indicate internal
pressures P/kB = (107−109) K cm−3 in the jet, exceeding the ambient pressure in
the surrounding core and GMC by a factor of 102−104. In principle, infalling envelope
gas could provide a nozzle to collimate an emerging wind, but simulations indicate that
only relatively weak winds can be so confined as to produce a narrow jet (Delamarter,
Frank & Hartmann 2000). This implies that observed jets must be contained within a
broader wind, with collimation likely produced by magnetic hoop stresses (see below).
Emission line analyses in fact indicate that a lower-velocity [∼(10−50) kms−1] wind
component is present near the source, surrounding the high-velocity flow of a few
100 km s−1 that emerges as the large-scale jet (Hartigan, Edwards & Ghandour 1995;
Hirth, Mundt & Solf 1997; Bacciotti et al. 2000; Pyo et al. 2005). Because velocities of
MHD winds scale with the Keplerian rotation speed of the footpoint (see below), the
presence of both high- and low-velocity components suggests that winds are driven
from a range of radii in the disk. Recent high-resolution observations have detected
signatures of differential rotation in jets, using near-UV, optical, and near-IR lines
(Bacciotti et al. 2002, Ray et al. 2007); these also indicate a range of wind launch points.

Recent reviews of the observational properties of molecular outflows include those
of Bachiller & Tafalla (1999), Richer et al. (2000), and Arce et al. (2007). Like jets,
classical molecular outflows can extend to distances of 0.1−1 pc from the central star,
but they have much lower velocities (up to a few tens of kilometers per second) and
collimation (aspect ratio ∼ 3−10). In a few very young, embedded sources, molecular
jets with much higher velocities and aspect ratios have been observed in H2, CO, and
SiO lines (e.g., Gueth & Guilloteau 1999, Beuther et al. 2002a, Lee et al. 2007).
The total momentum flux carried in CO outflows is correlated with the bolometric
luminosity of the source and is discussed in Section 3.2.2. For embedded sources with
Lbol = 1 − 105 L�, the momentum flux is 10−4 − 10−1 M� km s−1 year−1 (Richer
et al. 2000); in optically revealed sources, this declines considerably (e.g., Bontemps
et al. 1996).

Detailed spectroscopic and morphological analysis of outflows enable intercom-
parisons with theoretical models. Mapping of outflows reveals both simple expanding
shells and more complex features such as multiple cavities and bow shock structures
that are suggestive of episodic ejection events (Lee et al. 2002); outflow lobes be-
come broader and more irregular over time (Arce & Sargent 2006). Channel maps
and position-velocity diagrams in some sources show parabolic structures that are
consistent with driving by wide-angle winds and, in other sources, show spur struc-
tures that are consistent with jet driving (Lee et al. 2000, 2001). The strongly curved
morphology of internal bow shocks (as seen in both molecular and atomic tracers) in-
dicates that the wind must have velocities that decrease away from the poles, because
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a time-variable wind with latitudinally-constant velocity produces nearly flat internal
shocks (Lee et al. 2001). This implies, in turn, that the wind is driven from a range
of radii in the disk, rather than arising from only a narrow region.

4.2.5. Driving magnetohydrodynamic winds and jets. It was recognized very early
on that jets and outflows contain more momentum than could possibly be driven by
radiation pressure (Lada 1985), whereas the high efficiencies and velocities found
by Blandford & Payne (1982) for MHD winds driven from accretion disks in near-
Keplerian rotation suggested that the same magnetocentrifugal mechanism could
drive winds in YSO systems (Pudritz & Norman 1983). The main requirement for
these winds to develop is for the disk to be threaded by magnetic fields of sufficient
strength. The mathematical theory of MHD winds and jets is presented in, e.g.,
Spruit (1996) and Pudritz (2004).

Over the years, two main types of MHD wind models for YSO systems have been
explored. One, the x-wind model (see Shu et al. 1994 and references in Shu et al.
2000 and Shang, Li & Hirano 2007), focuses on the interaction region between the
stellar magnetosphere and the inner accretion disk as the source of the wind. In this
model, a large portion of the stellar dipole flux is taken to be concentrated into a small
range of radii near the point where the magnetosphere and disk corotate. Because
YSOs are rapid rotators the corotation point is close to the star, and the wind that
would be launched could have terminal speed of a few 100 km s−1, as is observed in
jets. The second class of MHD wind models assumes that a much larger region of
the disk is threaded by open field lines, such that there would be a range of terminal
wind speeds, reflecting the range of rotation speeds at the magnetic field’s footpoints
in the disk (see references in Konigl & Pudritz 2000 and Pudritz et al. 2007). For disk
winds, the poloidal magnetic flux could in part be generated locally (e.g., by an MRI
dynamo), in part be advected inward with the collapse of the prestellar core, and in
part originate in the star and diffuse outward into the disk. Because one type of wind
would not exclude the other, it is likely that both x-winds and disk winds are present
at some level. This might help, for example, explain particular features of jets such as
their strong central density concentration as well as the apparent decrease in velocity
from inside to outside.

The observed rotation velocities in jets can be used to infer the launch point in
the disk (Anderson et al. 2003). From the Bernoulli equation for a cold flow along a
streamline that rotates with angular velocity �0, the quantity E = 1

2 |v|2 +�g −vφ�0 R
is constant, where �g = −Gm∗/r is the gravitational potential and in this section R
denotes the cylindrical radius. At Robs, where the wind is observed (sufficiently beyond
the Alfvén transition), the dominant terms in the E equation are the first and the last
terms on the right-hand side. For the cases of interest, vφ,obs � vp,obs, where vp is the
poloidal velocity, and |E |1/2 = (3/2)1/2�0 R0 � vp,obs, so that �0 ≈ v2

p,obs/(2vφ,obs Robs).
The specific angular momentum j = R(vφ − Bφ Bp/[4πρvp ]) is also conserved along
streamlines. One can show that this is equal to �0 R2

A, where RA is the Alfvén radius
of the wind. Because j is dominated by the kinetic term at large distance (where the
wind is superfast-magnetosonic), observations can be used to infer the ratio RA/Robs ≈√

2vφ,obs/vp,obs. For the low velocity component of DG Tau, Anderson et al. (2003)
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find, from calculating �0 as above, that the wind launch point radii are ∼0.3−4 AU,
implying a disk wind. The high velocity component could originate as either an x-wind
or a disk wind from smaller radii. For DG Tau, the inferred ratio RA/R0 ≈ 2 − 3
is also consistent with numerical solutions that have been obtained for disk winds
(see Pudritz et al. 2007 for a summary). This implies that the angular momentum
carried by the wind, Ṁwind�0 R2

A, which equals the angular momentum lost by the
disk, Ṁdisk�0 R2

0 , can drive accretion at a rate Ṁdisk/Ṁwind = (RA/R0)2 ∼ 4 − 9.
The acceleration of MHD winds is provided by a combination of the centrifugal

flinging effect produced by rigid poloidal fields and gradients in the toroidal magnetic
pressure in the poloidal direction (e.g., Spruit (1996)). Beyond the Alfvén surface,
magnetic hoop stresses will tend to bend streamlines toward the poles. Full cylindrical
streamline collimation, in the sense of vp || ẑ asymptotically, can only occur if Bφ R
is finite for R → ∞ (Heyvaerts & Norman 1989). Using solutions in which all
velocities scale as v, vA ∝ r−1/2 and the density and magnetic field, respectively, scale
as ρ ∝ r−q and B ∝ r−(1+q )/2, Ostriker (1997) showed, however, that cylindrically
collimated disk winds are slow, in the sense that the asymptotic value of vp/�0 R0

is at most a few tenths. Because observed jets are fast, they must either have their
streamlines collimated by a slower external wind or else be collimated primarily in
density rather than velocity. Time-dependent simulations have also shown that the
degree of collimation in the flow depends on the distribution of magnetic flux in the
disk; cases with steeper distributions of B with R tend to be less collimated in terms
of streamline shapes (Fendt 2006; Pudritz, Rogers & Ouyed 2006).

The idea that nearly radially flowing wide-angle MHD winds may produce a jetlike
core, with density stratified on cylinders, was first introduced by Shu et al. (1995) in
the context of x-winds. This effect holds more generally, however, as can be seen both
analytically (Matzner & McKee 1999) and in simulations (see below). Asymptotically,
the density approaches ρ → |Bφ |Rk/(�0 R2), where k is the (conserved) mass flux-to-
magnetic flux ratio (also termed the mass-loading parameter). Because nearly radially
flowing winds must be nearly force-free, |Bφ |R varies weakly with R, such that if the
range of k/�0 over footpoints is smaller than the range of R over which the solution
applies (which is generally very large), the wind density will vary as R−2. The R−2

dependence cannot continue to the origin; Matzner & McKee (1999) suggested that
precession, internal shocks due to fluctuating wind velocity, or magnetic instabilities
would result in a flattening of the density close to the axis so that the momentum flux
in the wind ρvw ∝ (1 + θ2

0 − cos2 θ )−1, where θ is the angle of the flow relative to
the axis and θ0 � 1 measures the size of the flattened region. This distribution gives
approximately equal amounts of momentum in each logarithmic interval of angle for
θ > θ0. Several time-dependent numerical MHD simulations have demonstrated this
density collimation effect for wide-angle winds (Gardiner, Frank & Hartmann 2003;
Krasnopolsky, Li & Blandford 2003; Anderson et al. 2005).

Magnetized winds are subject to a variety of instabilities (e.g., Kim & Ostriker
2000, Hardee 2004), which may contribute to enhancing the confinement of the
jet, structuring the jet column (yielding wanders, twists, and clumps), and mixing
with the ambient medium at interfaces. Because jets are likely surrounded by wider
winds, they are to some extent protected from the development of Kelvin-Helmholtz
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and helical modes that that disrupt jets propagating through ambient gas, although
development of axisymmetric pinch modes may still contribute to the formation of
HH knots (Hardee & Rosen 2002). In addition, lightly loaded poloidal flux within
the central core of the wind/jet may help suppress the growth of large-scale pinch
and kink instabilities (Ostriker & Shu 1995, Anderson et al. 2006). Time-dependent
simulations focusing on the portion of the wind flow above the disk show that while
steady winds are possible in certain ranges of the mass-loading parameter for a given
distribution of magnetic flux, in other ranges no steady solution is possible (Ouyed &
Pudritz 1999, Anderson et al. 2005). Because the spectral diagnostics of HH objects
indicate shock speeds of a few tens of kilometers per second, it is plausible that they
form due to nonlinear steepening and shocking of wind instabilities.

4.2.6. Origins and effects of outflows. Overall, the structure and kinematics of
molecular outflows suggest that they are driven by winds that originate from a range
of radii in the disk, with a dense central core (seen as a jet) surrounded by a lower
density, lower velocity wide-angle wind. Jet driving and wind driving of outflows
have traditionally been explored separately, although in practice they would operate
in tandem.

Jets drive outflows as bow shocks, with ambient material swept into a thin shell
and carried away from the body of the jet as the shock overtakes and entrains it
(Raga & Cabrit 1993, Masson & Chernin 1993), mixing newly shocked material
with material that is already flowing outward (Smith, Suttner & Yorke 1997). The
leading bow shock is itself created owing to pressure forces at the circumferential
boundary of the working surface at the head of the jet, which drive transverse flows.
Jets with internal shocks can create analogous bow shocks, with the difference that
internal bow shocks would propagate into the wind that surrounds the jet, whereas the
leading bow shock would propagate into the ambient medium. Leading bow shocks
tend to be fairly narrow, because the cooling of shocked gas in the working surface
limits the transverse thrust that can be applied to the shell (Downes & Ray 1999). As
a consequence, the width of the shell increases only as the cube root of the distance
from the head of the jet (Masson & Chernin 1993, Ostriker et al. 2001). Thus, bow
shocks have difficulty explaining broad outflows. However, the convex spur velocity
features seen in some systems agree well with the predictions of bow shock models
(Lee et al. 2001, Ostriker et al. 2001).

For wide-angle winds, the momentum flux contained in the transverse bulk mo-
tion of the wind is large compared to the thrust that could be provided by pressure
forces in the shell of shocked (strongly cooling) gas, so that a momentum-conserving
“snowplow” flow is a good approximation. Shu et al. (1991) developed the “wind-
swept shell” model of outflows based on this concept, which was able to explain the
large opening angles seen in most outflows. Li & Shu (1996) and Matzner & McKee
(1999) extended the wind-swept shell analytic model to incorporate the character-
istic R−2 density stratification and logarithmic collimation of streamlines of asymp-
totic wide-angle MHD winds, as well as allow for latitudinal density stratification
in the surrounding core. The mass-velocity and position-velocity relations for these
analytic models agree well with those in observed outflows. Numerical simulations
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of outflows swept up by wide-angle winds (Lee et al. 2001, Shang et al. 2006) are in
good agreement with the results of analytic models.

Outflows affect the immediate environment of the forming star (removing mass
from the core before it can collapse into a disk), the clump in which the core forms (also
removing mass, and injecting energy), and the larger-scale cloud (injecting energy).
The effects of energy injection on clumps forming clusters of stars, and on GMCs as
a whole, are discussed in Section 4.3.5 and Section 3.2.2, respectively. Mass removal
by winds is related to the star-formation efficiency, which we discuss below.

The star-formation efficiency ε can be defined for individual cores, for star-
forming clumps, or for GMCs. The correspondence between the CMF and the IMF
has been discussed in Section 3.3; they are related by the core star-formation efficiency,
εcore ≡ m∗/Mcore. (The individual-star IMF must also take into account the multi-
plicity of the stars formed in a given core.) Nakano, Hasegawa & Norman (1995)
showed that outflows from protostars could reverse the infall and determine εcore;
they assumed spherical winds and found εcore ∼ a few percent. Matzner & McKee
(2000) calculated the dynamics of the outflows including collimation and obtained
εcore ∼ 0.25−0.75, depending on the degree of flattening of the core owing to mag-
netic support. Subsequent observations suggest εcore � 1/5 − 1/3 (Section 3.3.1),
at the low end of this range. They also evaluated the star-formation efficiency for a
star-forming clump and found typical values somewhat less than 0.5. The predicted
values of ε are inversely proportional to the momentum per unit mass in the outflow,
pw/m∗; they are consistent with observation for pw/m∗ ∼ 40 km s−1 as assumed, but
not if pw/m∗ is much smaller (see Section 3.2.2 for a discussion of the values of pw

inferred from observation). Both Nakano, Hasegawa & Norman (1995) and Matzner
& McKee (2000) found that εcore is only weakly dependent on the core mass, so that
the CMF and the IMF should be similar in shape, as observed (Section 3.3).

4.3. High-Mass Star Formation

High-mass protostars are characterized by Kelvin-Helmholtz times that are smaller
than the accretion time, so that they undergo nuclear burning while still accreting
(Section 4.1). This leads to two powerful feedback effects that do not apply to low-
mass protostars—radiation pressure and photoionization (Larson & Starrfield 1971).
Furthermore, high-mass protostars tend to form in dense clusters, so that interaction
with other protostars and newly formed stars may be important in their evolution.
Drawing on the review by Beuther et al. (2007), we first summarize work on infall
onto high-mass protostars and then discuss the feedback effects.

4.3.1. Protostellar infall. High-mass star formation is generally taken to be a scaled-
up version of low-mass star formation: The accretion rate is ṁ∗ ∼ c 3

eff/G, where the ef-
fective sound speed c eff includes the effects of thermal gas pressure, magnetic pressure,
and turbulence (Stahler, Shu & Taam 1980, although they did not address the issue
of high-mass star formation). As discussed in Section 4.1, there may be a numerical
factor of a few in front of the c 3

eff/G. Wolfire & Cassinelli (1987) found that accretion
rates of order 10−3 M� year−1 are needed to overcome the effects of radiation pressure
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for the highest stellar masses, and attributed this to the high values of c eff in high-
mass star-forming regions. Myers & Fuller (1992) used their thermal/nonthermal
model (Section 2.2) to infer formation times for (10 − 30) M� stars of (6 − 10) × 105

years; the turbulent envelopes allow equilibrium cores to have greater densities and
shorter collapse times than those supported by thermal pressure alone. Caselli & My-
ers (1995) extended this to more massive stars and found formation times >106 years
for stars of 100 M�, a significant fraction of the main sequence lifetime. However,
by modeling the SEDs of high-mass protostars, Osorio, Lizano & D’Alessio (1999)
inferred that high-mass stars form in somewhat less than 105 years and favored a loga-
tropic model for the density distribution of the core. Nakano et al. (2000) inferred an
accretion rate of 10−2 M� year−1 (corresponding to a formation time of a few thou-
sand years) for the source IRc2 in Orion based on the assumption that the accretion
rate is ∼10c 3

eff/G, with the effective sound speed c eff determined from the observed
linewidth.

The turbulent core model for high-mass star formation (McKee & Tan 2002,
2003) follows from the assumption that such stars form in turbulent, gravitationally
bound cores (virial parameter αvir ∼ 1). The turbulence is self-similar on all scales
above the Bonnor-Ebert scale, where thermal pressure dominates. The star-forming
clump and the protostellar cores within it are assumed to be centrally concentrated
so that the pressure and density have a power-law dependence on radius, P ∝ r−kP ,
ρ ∝ r−kρ . It follows that the cores are polytropes (Section 2.2), and because the
Bonnor-Ebert scale is small, the cores are approximately singular. The protostellar
infall rate is determined by the surface density of the protostellar core, which in turn
is comparable to that of the clump in which it is embedded. The regions of high-
mass star formation studied by Plume et al. (1997) have surface densities �cl ∼ 1 g
cm−3, corresponding to visual extinctions AV ∼ 200 mag; these values are similar
to those for observed star clusters in the Galaxy (e.g., ∼0.2 g cm−2 in the Orion
Nebula Cluster, 0.8 g cm−2 for the median globular cluster and ∼4 g cm−2 in the
Arches Cluster). By contrast, regions of low-mass star formation have � ∼ 0.03 g
cm−2, corresponding to AV ∼ 7 mag (Onishi et al. 1996). The radius of a protostellar
core is

Rcore =
(

Mcore

π�core

)1/2

� 0.06
(

m∗ f

60εcore M�

)1/2 1

�
1/2
cl

pc, (51)

where m∗ f is the final stellar mass. The second expression is based on the result that
the surface density of a typical core is comparable to that of the clump in which it
is embedded; cores near the center of a clump have higher surface densities, and the
sizes are correspondingly smaller. Using the results of McLaughlin & Pudritz (1997)
for the inside-out collapse of a singular polytrope and adopting kρ = 3/2, a typical
density power-law from Plume et al. (1997), McKee & Tan (2003) found that the
typical infall rate and the corresponding time to form a star of mass m∗ f are

ṁ∗ � 0.5 × 10−3
(

m∗ f

60εcore M�

)3/4

�
3/4
cl

(
m∗
m∗ f

)0.5

M� year−1, (52)
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and

t∗ f � 1.3 × 105
(

m∗ f

60εcore M�

)1/4

�
−3/4
cl year, (53)

where �cl is the surface density (in g cm−2) of the several thousand M� clump in which
the star is forming. For typical values of �cl ∼ 1 g cm−2, the star-formation time is of
order 105 years and the infall rate is of order 10−3 M� year−1. This infall rate is large
enough to overcome the effects of radiation pressure at the dust destruction front,
thereby addressing one of the key theoretical difficulties for models of high-mass star
formation (see below). The mean infall rate could be somewhat larger than given in
Equation 52 if the core was initially overdense or contracting, and turbulence in the
core could generate large fluctuations in the infall rate. However, the infall rate given
above is only a few times greater than the free-fall value and is unlikely to be much
larger.

The key assumptions in this model are that stars form from preassembled cores
(although because the cores are turbulent, there will be significant mass exchange with
the ambient medium); that the cores and the clumps in which they are embedded are
in approximate virial equilibrium; and that they are magnetically supercritical, so
that the magnetic field does not significantly limit the rate of accretion. Evidence
in support of the first assumption has been obtained by Beuther, Sridharan & Saito
(2005) and Sridharan et al. (2005); the remaining assumptions are also subject to
observational test. The model is necessarily approximate, as it treats the turbulence
as a local pressure (the microturbulent approximation), and because it incorporates all
the feedback effects owing to radiation pressure and photoevaporation in the core star-
formation efficiency, εcore, which was assumed to be of order 1/2. Some of the large
density fluctuations in the supersonically turbulent cores will form low-mass stars,
but most of the mass of the core is assumed to go into one or two massive stars. Dobbs,
Bonnell & Clark (2005) have criticized the model on the ground that the massive cores
would fragment and form many low-mass stars rather than a single massive star, but
radiative heating by the rapidly accreting high-mass protostar strongly suppresses
fragmentation (Krumholz 2006; Krumholz, Klein & McKee 2007). The turbulent
core model is consistent with the correspondence between the CMF and the IMF
(Section 3.3), and it naturally allows for the disks and winds associated with high-mass
stars (see Section 4.2) because it is an extrapolation of low-mass star-formation theory.
The cores are predicted to be denser than the clump in which they are embedded
by about (Mclump/Mcore)1/2, which is much greater than unity for stellar mass cores
embedded in clumps with M > 103 M�; this naturally overcomes the crowding
problem.

An alternative class of gravitational collapse models involves rapidly accelerating
accretion (ṁ∗ ∝ mq

∗ with q > 1, so that m∗ → ∞ in a finite time in the absence
of other effects). Building on the work of Norberg & Maeder (2000), Behrend &
Maeder (2001) assumed that the accretion rates are proportional to the mass outflow
rates observed in protostellar outflows; because the outflows are swept-up material,
the justification for this assumption is unclear. They found t∗ f ∼ 3 × 105 years for
massive stars, with most of the growth occurring in the last 10% of this time. In the
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competitive accretion model (Bonnell et al. 1997; see Section 4.1.2), massive stars
form via Bondi-Hoyle accretion (ṁ∗ ∝ m2

∗). Keto (2002, 2003) has studied this model
further, focusing on the associated HII regions. For a 10-M� star in a typical high-
mass star-forming clump observed by Plume et al. (1997), which has a mass ∼4000 M�
and a virial parameter of order unity, the BH accretion rate is much smaller than that
expected in the turbulent core model (McKee & Tan 2003), even after allowing for the
turbulent enhancement factor φBH (Equation 47). The rate of BH accretion increases
if the virial parameter is small, if the infall occurs onto a cluster of stars that is much
more massive than a single star (as Keto comments), or if the infall occurs from a
significantly less massive clump. In the latter two cases the assumptions underlying
BH accretion begin to break down, and further study is needed to determine the infall
rate. Edgar & Clarke (2004) have shown that radiation pressure halts BH accretion
when the star is moving supersonically relative to the gas for m∗ > 10 M�, because
the luminosity is large enough that radiation pressure deflects gas away from the star.

In view of the challenges facing conventional theories of high-mass star formation,
Bonnell, Bate & Zinnecker (1998) made the radical suggestion that high-mass stars
form via stellar collisions. This model requires stellar densities of ∼108 stars pc−3

during the brief period in which the stars grow by merging. This coalescence model
produces an IMF that is in qualitative agreement with observations, although no
feedback effects were included in the calculations (Bonnell et al. 2001b). This model
faces a number of challenges: (a) The required stellar density is far greater than
has been observed in any Galactic star cluster. For example, W3 IRS5 is one of the
densest clusters observed to date, with five proto OB stars in a sphere of radius 0.015 pc
(Megeath, Wilson & Corbin 2005); the corresponding stellar density ∼4×105 pc−3 is
lower than required by the coalescence model by more than two orders of magnitude,
although it must be borne in mind that the number of lower mass stars in that volume is
currently unknown. (b) For large OB protoclusters, the hypothesized ultradense state
would produce a very luminous, compact source, yet this has never been observed.
(c) The mass loss that is hypothesized to reduce the cluster density to observed values
must be finely tuned in order to leave the cluster marginally bound. (d ) Finally, it
is difficult to see how the model could account for the observed disks and outflows
discussed above. Bally & Zinnecker (2005) discuss a number of observational tests
of the coalescence model, and suggest that the wide-angle outflow from OMC-1
in the Orion molecular cloud could be due to the merger of two protostars that
released 1048−1049 erg. Two variants of the coalescence model have been suggested:
Stahler, Palla & Ho (2000) proposed that gas bound to the protostars could increase
the cross section for collisions, although they did not explain why this would result
in stellar coalescence rather than the formation of a binary. Bonnell & Bate (2005)
have proposed an explanation for this: assuming that the gas has negligible angular
momentum (which is plausible if the turbulence is weak, as assumed in the competitive
accretion model), then accretion drives the stars in the binary to closer separations and
ultimately to a merger. The stellar density required for the binary coalescence model
is ∼3 × 106 stars pc−3, substantially smaller than in the direct coalescence model but
higher than observed nonetheless. However, Krumholz & Thompson (2006) argue
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that pre-main-sequence evolution of tight, high-mass protostellar binaries can lead
to equal-mass binaries, as often observed, rather than to mergers.

4.3.2. Observations of high-mass protostars. Beuther et al. (2007) have summa-
rized the current state of observations of high-mass star formation. They divide the
formation of individual high-mass stars into four stages:

1. High-mass starless cores (HMSCs)
2. High-mass cores harboring accreting low/intermediate-mass protostar(s) des-

tined to become high-mass star(s)
3. High-mass protostellar objects (HMPOs), with m∗ � 8 M�
4. Final stars

The earliest stages of high-mass star formation may occur in the Infrared Dark Clouds
(IRDCs–Egan et al. 1998), which have properties consistent with being the dense
clumps out of which clusters eventually form (Simon et al. 2006). To date, few true
HMSCs have been detected—high-mass cores often appear to have some signatures of
star formation. In the turbulent core model, this could be because the central densities
in the cores are much greater than the mean densities (in contrast to the case for low-
mass cores), and the timescale for gravitational collapse is correspondingly shorter.
The lack of true HMSCs is also consistent with the competitive accretion model
or the coalescence model, because in these models HMSCs do not exist. Evidence
for HMSCs harboring low-/intermediate-mass protostars, or possibly relatively low-
mass HMPOs, has been obtained only recently (Beuther et al. 2005, Sridharan et
al. 2005). HMPOs are often (but not always) associated with hot molecular cores
(HMCs), which have a rich chemistry (van der Tak 2005). HMPOs are often asso-
ciated with H2O and Class II CH3OH maser emission, although the interpretation
of this emission remains ambiguous. HMPOs are also associated with HII regions
(see Section 4.3.4); many should have hypercompact HII regions and some should
be associated with ultracompact HII regions, but most ultracompact HII regions are
associated with the final stars.

Observational tests of infall models for high-mass protostars are difficult owing to
their large distances (typically �2 kpc), crowding, large extinctions, and confounding
effects of HII regions. Several tests are possible: if confirmed, the correspondence
between the CMF and the IMF (Section 3.3) would be consistent with the turbulent
core model; the properties of disks and winds associated with HMPOs can provide
important clues (Section 4.2.1); the SEDs of embedded sources provide information
on the distribution of circumstellar matter on scales smaller than can be directly
resolved (Osorio, Lizano & D’Alessio 1999; Chakrabarti & McKee 2005; Whitney
et al. 2005); and chemical clocks can provide direct measures of the timescale for the
growth of HMPOs. To this end, Doty, van Dishoeck & Tan (2006) have developed
the first model for the chemical evolution of an HMPO, including the evolution of
the central source, infall, and adsorption and desorption of ices from grains. They
find that the timescale for the warm chemistry is set by the time it takes for matter
to flow through the warm region, and that the total age of the HMPO they study
(AFGL 2591) is (0.3−1) × 105 years.
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4.3.3. Forming stars in the presence of radiation pressure. One measure of
the importance of radiation pressure is to compare the stellar luminosity with the
luminosity at which the force due to radiation pressure balances gravity. Because dust
provides the dominant opacity to nonionizing radiation in the ISM, this generalized
Eddington luminosity is

LE,d = 4π c Gm∗
κd

, (54)

where κd is the dust opacity per unit mass, and c is the speed of light. The
dust in the infalling gas sublimates when it reaches the dust destruction front at
r = Rdd � 1.2×1015(L/105 L�)1/2 cm (Wolfire & Cassinelli 1987). We approximate
the radiation field outside Rdd as a black body with a temperature T that declines with
radius. As an example, consider the Pollack et al. (1994) dust model: κd (T ) first rises
with temperature as the average frequency increases, but then declines for T � 600
K as some of the grain species sublimate. The maximum opacity is κ � 8 cm2 g−1,
which leads to LE,d � 1600(m∗/M�) L�. Because main-sequence stars have luminosi-
ties L � 10(m∗/M�)3 L� for 7 M� � m∗ � 20M� (inferred from Arnett 1996), the
infalling gas and dust pass through a region in which the force due to the IR radiation
exceeds that due to gravity if m∗ � 13M�. For somewhat larger masses, the net force
is outward over a sufficiently large region such that the infall is stopped. At the dust
destruction front, the gas and dust are exposed to the stellar UV radiation, for which
κ ∼ 200 cm2 g−1. However, this radiation interacts with the matter only once with this
opacity, because it is emitted in the IR after absorption; as a result, the condition for the
infall to persist is that its momentum must exceed that of the radiation, Ṁinvin > L/c
(Larson & Starrfield 1971, Kahn 1974, Wolfire & Cassinelli 1987). High infall rates
∼10−3 M� year−1 can overcome the UV radiation problem, but not the IR one.

Several mechanisms have been proposed to permit the formation of massive stars
in the face of radiation pressure.

1. Reduced dust opacity. Based on 1D, multifluid calculations of steady flows with
both graphite and silicate grains with a range of sizes, Wolfire & Cassinelli
(1987) found that a reduction in the dust-to-gas ratio of at least a factor of four
is needed in order for accretion to proceed for stars with m∗ ≥ 60 M�.

2. Rotation. Nakano (1989) showed that the higher ram pressure associated with
disk accretion helps overcome the UV radiation pressure problem, and escape
of the IR radiation from the disk alleviates the IR radiation pressure problem.
He found that accretion could continue onto a 100-M� star with an accretion
rate as small as 10−4 M� year−1, 50 times smaller than for spherical accretion.
Jijina & Adams (1996) showed that there are a range of conditions for which
IR radiation pressure cannot halt infall prior to the formation of a disk in
the context of the Terebey, Shu & Cassen (1984) model for rotating collapse,
even for quite massive stars. Yorke & Sonnhalter (2002) have carried out the
most detailed axisymmetric numerical simulations to date. Using frequency-
dependent radiative transfer, they found that radiation pressure limited the
maximum stellar mass that could be formed from a 120-M� core to 43 M�; they
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point out that this is an upper limit, because it did not allow for fragmentation
or for the effects of outflows.

3. Rapid infall. Edgar & Clarke (2003) have shown that radiation pressure becomes
moot if the protostellar core is sufficiently dense such that the protostellar mass
is inside the dust destruction front. The models they considered to achieve
this condition were far from virial equilibrium and had constant density, which
led to very large accretion rates ∼10−2 M� year−1. However, models with cen-
trally concentrated initial density profiles (ρ ∝ r−1) and normal dust could not
produce stars with m∗ > 16 M�.

4. Beaming. Nakano (1989) pointed out that disks redirect the IR radiation toward
the poles, reducing the radiative force in the plane (Yorke & Bodenheimer 1999
termed this the flashlight effect and emphasized its observational importance).
Krumholz, McKee & Klein (2005b) showed that the cavities produced by out-
flows from massive stars would allow the IR radiation to escape, reducing the
the radiation pressure in the infalling gas and permitting infall over a substantial
range of solid angle.

5. Three-dimensional effects. 3D simulations with flux-limited, gray radiative trans-
fer show that the accreting gas is subject to radiation-driven Rayleigh-Taylor
instabilities, which facilitate the escape of the radiation in low column regions
and the accretion of the gas in high column regions (Krumholz, Klein & Mc-
Kee 2005). There is no evidence that radiation pressure halts the accretion up
to m∗ = 35 M�, a substantially higher mass than was found in axisymmetric
simulations with gray transfer (Yorke & Sonnhalter 2002). Turner, Quataert &
Yorke (2007) have shown that the dusty envelopes of HMPOs are subject to the
photon bubble instability, which further promotes infall.

4.3.4. Photoionization feedback: HII regions. The HII regions associated with
HMPOs provide strong feedback on infall and accretion, and may play a role in defin-
ing the maximum stellar mass. They are classified into two types: Ultra-compact HII
(UCHII) regions have diameters (0.01−0.1) pc, densities ≥104 cm−3, and emission
measures

∫
n2

e dl ≥ 107 pc cm−6 (Wood & Churchwell 1989). Hypercompact HII
(HCHII) regions have diameters <0.01 pc with emission measures ≥108 pc cm−6

(Beuther et al. 2007; for a slightly different definition and a review of both types of
HII region, see Hoare et al. 2007). HCHII regions often appear in tight groups in
high-mass star-forming regions, and they often have broad radio recombination lines
with widths that can exceed 100 km s−1.

The high accretion rates characteristic of HMPOs delay the point at which the
stars reach the main sequence (McKee & Tan 2003, Krumholz & Thompson 2006),
thereby delaying the time at which the photosphere is hot enough to produce an
HII region. High accretion rates also quench the emission of ionizing photons once
the star has reached the main sequence (Walmsley 1995). Close to the star—i.e.,
inside the gravitational radius rg = Gm∗/c 2

i = 3.2 × 1015(m∗/30 M�) cm, where
c i � 10 km s−1 is the isothermal sound speed of the ionized gas—spherically accret-
ing gas is in free fall, with ρ ∝ r−3/2. For an ionizing photon luminosity S, the radius
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of the HCHII region is

RHCHII = R∗ exp(S/Scr), (55)

where

Scr = α(2)ṁ2
∗

8πμ2
HGm∗

= 5.6 × 1050
(

ṁ∗
10−3 M� year−1

)2 (
100 M�

m∗

)
s−1, (56)

(Omukai & Inutsuka 2002), where α(2) is the recombination rate to excited states of
hydrogen and where we have replaced the proton mass in their expression with μH =
2.34×10−24 g, the mass per hydrogen nucleus. Provided the accretion is spherical, the
HII region is quenched for S � Scr. If S/Scr is not too large (�7), RHCHII is less than
rg/2, and the infall velocity at the Stromgren radius exceeds 2c i , the minimum velocity
of an R-critical ionization front; as a result there is no shock in the accretion flow and
the HII region cannot undergo the classical pressure-driven expansion (Keto 2002). If
the accretion is via a disk, as is generally expected, then the ionizing photons can escape
out of the plane of the disk, and the HII region will not be trapped (Keto & Wood
2006; Keto 2007). Disk accretion is often associated with the production of winds, and
Tan & McKee (2003) have suggested that such winds confine HCHII regions: The
winds clear the gas along the axis, and the ionizing radiation then illuminates the inner
surfaces of the winds. If correct, this offers the possibility of a powerful diagnostic
for determining the nature of disk winds associated with massive stars. van der Tak
& Menten (2005) found very compact radio emission aligned with the outflows in
two high-mass protostellar sources, consistent with this picture. When the ionizing
luminosity becomes large enough, however, the wind will become ionized and the
HII region will evolve to a UCHII state. The ionizing photons will photoevaporate
the surface of the disk at a rate of order ṁevap ∼ few ×10−5(S/1049 s−1)1/2 M� year−1;
absorption of ionizing photons by dust can significantly affect this (Hollenbach et al.
1994, Richling & Yorke 1997). This mass-loss rate is too small to be important in
setting the maximum mass of the star (although it can be important in primordial star
formation—McKee & Tan, in preparation). Absorption of ionizing photons by dust
must also be taken into account when inferring the ionizing luminosity of the central
star from the properties of the HII region (Dopita et al. 2006 and references therein).

4.3.5. Star formation in clusters. Most stars are born in clusters (e.g., Lada &
Lada 2003, Allen et al. 2007), and this is particularly true of high-mass stars. The
mass distribution of clusters appears to obey a universal power-law, dNcluster/d ln M ∝
M−α , with α � 1. With this distribution, MdNcluster/d ln M = const: Taken together,
clusters in each decade of mass have the same total number of stars. Lada & Lada
(2003) find that very young clusters within 2 kpc of the Sun that are still embedded
in their natal molecular clouds obey this power-law for M � 50 M�; the upper limit
of the observed distribution is set by the largest cluster expected in the area they
surveyed. The mass distribution of OB associations in the Galaxy also has a power-law
distribution with α � 1 (McKee & Williams 1997); they inferred that the distribution
extended from ∼50 M� to 2 × 105 M� and could account for all the stars formed in
the Galaxy. Kennicutt, Edgar & Hodge (1989) found that the luminosity distribution
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of HII regions in disk galaxies obeys dN /d ln L ∝ L−1±0.5, which is consistent with
an M−1 distribution because the luminosity is proportional to mass for associations
that are large enough to fully sample the IMF. The distribution of OB associations in
the SMC has α = 1 from the largest associations down to associations with a single
OB star (Oey, King & Parker 2004). The star clusters in the “Antennae” galaxies
show α = 1 over the mass range 104 M� < M < 106 M� (Zhang & Fall 1999); this
is one of the best determined cluster mass functions, and has an error, including
systematic errors, estimated at ±0.1. The mass distributions of open clusters and
globular clusters are also consistent with an M−1 distribution at birth (Elmegreen &
Efremov 1997). Dowell, Buckalew & Tan (2007, submitted) found α � 0.9 for clusters
in irregular galaxies and α � 0.75 in disk galaxies, but comment that this result could
be affected by the low spatial resolution of the data. The M−1 mass distribution of
clusters is intermediate between the high-mass part of the IMF (M−1.35) on the one
hand, and the observed mass distribution of GMCs (M−0.6) and the clumps within
them (M−0.3 to M−0.7; Section 3.1) on the other. It is important to understand the
origin of the difference between the cluster IMF and the mass function of GMCs and
clumps if it is real, and not an artifact of limited statistics.

The structure of star clusters contains clues to their formation. High-mass stars
in Galactic clusters that are massive enough to contain a number of such stars are
observed to be segregated toward the center of the cluster. Hillenbrand & Hartmann
(1998) analyzed the spatial distribution of stars in the Orion Nebula Cluster (ONC)
and concluded that the high-mass stars were born preferentially near the center.
Using N-body simulations, Bonnell & Davies (1998) showed that it takes a relax-
ation time, trelax � 0.1(N∗/ lnN∗)tcross(�14tcross for N∗ = 1000), for high-mass stars
to collect near the center of a cluster due to dynamical interactions. In the case of
the ONC, they argued that significant dynamical mass segregation has occurred, but
not enough to account for the observed central concentration of OB stars; they con-
cluded therefore that the observed mass segregation is primordial. Tan, Krumholz
& McKee (2006) suggested both a greater age and a longer crossing time for the
ONC, but the basic conclusion does not change. In NGC 3603, the most luminous
Galactic star cluster that is not heavily obscured, Stolte et al. (2006) found that the
maximum mass of the stars decreases away from the center of the cluster, with all
the most massive stars being quite close to the center, and again concluded that the
segregation is primordial. These arguments for primordial mass segregation have
been weakened by the realization that subclustering in the initial cluster significantly
accelerates the rate of dynamical mass segregation (McMillan, Vesperini & Porte-
gies Zwart 2007). In addition, most estimates do not account for dynamical friction
between the stars and the surrounding gas, which can considerably reduce the mass
segregation timescale (Ostriker 1999). However, recent observations have reinforced
the argument for primordial mass segregation: Megeath, Wilson & Corbin (2005)
have found a Trapezium-like cluster in W3 IRS5 that is deeply embedded in molec-
ular gas and is only half the radius of the ONC. In ρ Oph, Stanke et al. (2006) found
direct evidence for primordial mass segregation by showing that the CMF exhibits
mass segregation as well; this also supports the correspondence between the CMF
and the IMF discussed in Section 3.3. The large fraction of O stars that are runaways
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can be naturally explained if they originate in dense, mass-segregated clusters and
undergo dynamical interactions (Clarke & Pringle 1992). The cluster R136 in the
LMC appears to be an exception to the rule that high-mass stars are centrally con-
centrated, because half the massive stars are located outside the central core (Stolte
et al. 2006).

Only a small fraction of clusters survive as bound clusters to an age of 108 years—
Lada & Lada (2003) estimate this fraction as 4−7%. In order for a cluster to remain
bound, its natal clump must have a high star-formation efficiency. Analytic estimates
suggest that if the gas in the clump is removed suddenly, such as by an HII region, one
requires εclump > 0.5 in order for the cluster to remain bound, whereas if the gas is
removed gradually, the cluster will expand adiabatically and lower values suffice (Hills
1980; Mathieu 1983). Numerical calculations show that a fraction of the cluster sur-
vives even if the mass ejection is abrupt (Lada, Margulis & Dearborn 1984). Kroupa,
Aarseth & Hurley (2001) modeled the evolution of the ONC with εclump = 0.3 and
a sudden mass ejection; they concluded that 30% of the mass of the ONC would
remain bound and that it would evolve into a cluster like the Pleiades. Star-formation
efficiencies in the embedded clusters in the Solar Neighborhood are observed to be
�0.1−0.3 (Lada & Lada 2003); because star formation is ongoing in these clusters,
the final value of the star-formation efficiency, εclump, is near the upper limit of this
range. Matzner & McKee (2000) calculated the star-formation efficiency for clumps
in which the mass loss is dominated by protostellar outflows (M � 1 − 3 × 103 M�).
(Note that the clump star-formation efficiency, εclump, which is the fraction of the mass
of a clump that goes into a cluster of stars, is distinct from the core star-formation
efficiency, εcore, which is the fraction of a core mass that goes into a single or binary
star.) They estimated εclump � 0.4 for clumps with escape velocities vesc � 2 km s−1,
comparable to the observed value. The star-formation efficiency is predicted to rise
with vesc—i.e., with increasing mass and/or density of the clump.

The star-formation efficiency for larger clusters, ranging up to globular clusters
and super star clusters (SSCs; e.g., Ho & Filippenko 1996) is most likely determined
by the HII regions that form in the clusters. Because globular clusters are much more
centrally concentrated than open clusters that form in the disk of the Galaxy today,
it is likely that their star-formation efficiency, εclump, was higher. (Note that a high
star-formation efficiency over the life of the clump, εclump, is consistent with a low
value of the star-formation efficiency per free-fall time, εff,clump, only if clusters form
over a number of free-fall times, and conversely, cluster formation in 1–2 dynamical
times requires a relatively high value of εff,clump—see Section 3.4.) Using a simple
phenomenological model, Elmegreen & Efremov (1997) showed how εclump should
increase with both the mass of the natal clump and its pressure, P ∝ �2

cl. They
point out that high pressures are naturally produced in merging galaxies, accounting
for the large number of SSCs seen in such systems. The high surface densities of
globular clusters implies that they necessarily formed in high pressure environments
(see also McKee & Tan 2003). High star-formation efficiencies are possible in a
clump with embedded HII regions because their destructive effect is significantly
reduced in a clump composed of dense cores (Tan & McKee 2001, Dale et al. 2005).
For sufficiently massive and concentrated clusters, the escape velocity exceeds the
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sound speed of ionized gas, and this can further increase the star-formation efficiency
(Kroupa & Boily 2002, Matzner 2002, Tan & McKee 2004).

How do stars form in clusters? The natal clumps of embedded clusters in the
Solar Neighborhood have densities ∼104−5 cm−3 and masses ∼102−3 M� (Lada &
Lada 2003), and more broadly distributed high-mass star-forming clumps in the
Galaxy have densities ∼105 cm−3 and masses ∼103.5 M� (Plume et al. 1997). These
extreme conditions have led to suggestions that the process of high-mass star forma-
tion is qualitatively different from that observed in regions of low-mass star formation
(Section 4.3.1) or that it is triggered by an external effect. In a review of triggered star
formation, Elmegreen (1992) pointed out that triggering generally does not affect the
star-formation efficiency by more than a factor of two. In any case, triggered star for-
mation loses much of its meaning in a theory of star formation based on turbulence,
because in most cases the triggering event is just a manifestation of the intermit-
tency of the turbulence. The observed correspondence between the CMF and the
IMF (Section 3.3) and the constancy of the star-formation efficiency per free-fall
time (Section 3.4) suggest a more unified picture in which stars form via gravitational
collapse in a turbulent medium over most, if not all, the range of observed clustering.

5. OVERVIEW OF THE STAR-FORMATION PROCESS

Key goals of a theory of star formation are to predict the rate of star formation and the
distribution of stellar masses on the macroscopic scale, and to predict the properties
of individual stars from the initial conditions on the microscopic scale. In the past
decade, there has been a paradigm shift in the theory from star formation in a quasi-
static medium to star formation that occurs in a supersonically turbulent one, and this
has led to significant progress on both fronts. Based on our current understanding,
the narrative of star formation contains the following elements:

� The road to star formation in a disk galaxy like the Milky Way begins when
massive (∼107 M�) bound structures condense out of the diffuse ISM as a result
of gravitational instabilities, frequently initiated within spiral arms.

� The most massive structures (GMAs or HI superclouds) inherit high levels of
internal turbulence from the diffuse ISM, and this combines with self-gravity to
cause fragmentation into GMCs of a range of masses, as well as clumps within
the GMCs.

� The turbulence within GMCs is highly supersonic and approximately Alfvénic.
It imposes a log-normal distribution of densities and creates a spectrum of gas
condensations over a wide range of spatial scales and masses. This structure is
hierarchical.

� This turbulence damps in about one crossing time, and as yet it is not understood
exactly how, and for how long, the highly intermittent sources of energy in the
ISM (including within GMCs themselves) can maintain the observed universal
level of turbulence in GMCs.

� Spatially defined structures within GMCs tend to have internal velocity dis-
persions that increase with size as σ ∝ �0.5, which is understood to reflect the
underlying power spectrum scaling expected for supersonic turbulence.

664 McKee · Ostriker



ANRV320-AA45-13 ARI 26 July 2007 14:49

� Some of the densest regions created by turbulence become self-gravitating
cores with masses that are typically on the order of the Bonnor-Ebert mass.
The distribution of core masses appears to be similar to the IMF for stars, and
turbulence appears to be important in defining this distribution.

� These cores are frequently clustered, owing to the dominance of large scales
in the turbulent flow. Forming cores sample from the local vorticity of the
turbulence to determine their spins. The rate of core formation can be estimated
based on the turbulent properties of a GMC.

� Dense cores that begin or become magnetically supercritical undergo collapse,
first becoming strongly stratified internally. Observations show that magnetic
fields in cores are roughly critical, and this is consistent with inferred core
lifetimes.

� Continued accretion after the collapse of a core can occur if the surrounding
ambient medium has a sufficiently low level of turbulence, but it is not yet
known how much this can increase the masses of stars.

� The collapse of a core leads to the formation of a rotating disk interior to
an accretion shock; significant magnetic flux is lost in this collapse process,
although based on current results this is not enough to account for the small
fluxes observed in stars.

� Disks accrete owing to a combination of processes that transport angular mo-
mentum outward; these transport mechanisms include gravitational stresses
when the surface density is high enough, and magnetic stresses when the ion-
ization is high enough.

� Powerful winds are magnetocentrifugally driven from the surface of circumstel-
lar disks at a range of radii. The inner portion of the wind, which arises nearest
the central star, becomes collimated into a jet-like flow owing to magnetic hoop
stresses.

� The impact of a wide-angle, stratified disk wind on the protostellar core sweeps
up much of the ambient gas into a massive molecular outflow. This reduces
the net efficiency of star formation to ∼1/3. The combined action of many
outflows also helps to energize dense, star-cluster-forming clumps.

� Massive stars form from cores that are considerably more massive than a
Bonnor-Ebert mass, and are most likely highly turbulent. Radiation pressure
strongly affects the dynamics of massive star formation, but can be overcome
by the combined action of disk formation, protostellar outflows, and radiation-
hydrodynamic instabilities in the accreting gas. It is not clear whether proto-
stellar feedback determines the maximum mass of the stars that form.

� Massive, luminous stars ionize their surroundings into HII regions. The ex-
pansion of these regions into ambient gas at ∼10 km s−1 energizes GMCs,
contributing to the large-scale turbulent power. However, this process is diffi-
cult to regulate and can unbind GMCs within a few dynamical crossing times.
By the time they are finally destroyed, GMCs may have lost much of their
original mass by photoevaporation.

� The destruction of GMCs returns almost all of the gas they contain to the
diffuse phase of the ISM, with a mean star-formation efficiency over the cloud
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lifetime of ∼5%. This low efficiency can be understood as a consequence of
the small fraction of mass that is compressed into clumps dense enough that
turbulence does not destroy them before they collapse.

� The return of GMC gas to the diffuse ISM completes the cycle of star formation,
which then begins anew.

The coming decade will test and revise this narrative of star formation, particularly
with the advent of ALMA and JWST, and with the continued advances in numerical
simulation. Turning this narrative into a quantitative, predictive theory will provide
a foundation for addressing many of the outstanding questions in astrophysics today,
ranging from the formation of planets to the evolution of galaxies and the origin of
the elements.
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