1932

Abstract

It has been a decade since a novel form of microtubule (MT)-based motility, i.e., intraflagellar transport (IFT), was discovered in flagella. Subsequent research has supported the hypothesis that IFT is required for the assembly and maintenance of all cilia and flagella and that its underlying mechanism involves the transport of nonmembrane-bound macromolecular protein complexes (IFT particles) along axonemal MTs beneath the ciliary membrane. IFT requires the action of the anterograde kinesin-II motors and the retrograde IFT-dynein motors to transport IFT particles in opposite directions along the MT polymer lattice from the basal body to the tip of the axoneme and back again. A rich diversity of biological processes has been shown to depend upon IFT, including flagellar length control, cell swimming, mating and feeding, photoreception, animal development, sensory perception, chemosensory behavior, and lifespan control. These processes reflect the varied roles of cilia and flagella in motility and sensory signaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.19.111401.091318
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.cellbio.19.111401.091318
Loading
/content/journals/10.1146/annurev.cellbio.19.111401.091318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error