1932

Abstract

Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-021402
2021-11-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-021402.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-021402&mimeType=html&fmt=ahah

Literature Cited

  1. Alberti M. 2015. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30:2114–26Considered how eco-evolutionary dynamics and feedbacks might unfold in urban environments.
    [Google Scholar]
  2. Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP et al. 2017. Global urban signatures of phenotypic change in animal and plant populations. PNAS 114:8951–56
    [Google Scholar]
  3. Andrew SC, Taylor MP, Lundregan S, Lien S, Jensen H, Griffith SC. 2019. Signs of adaptation to trace metal contamination in a common urban bird. Sci. Total Environ. 650:679–86
    [Google Scholar]
  4. Arnold SJ. 1983. Morphology, performance and fitness. Am. Zool. 23:2347–61
    [Google Scholar]
  5. Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS et al. 2016. Hierarchical filters determine community assembly of urban species pools. Ecology 97:112952–63
    [Google Scholar]
  6. Bachmann JC, Jansen van Rensburg A, Cortazar-Chinarro M, Laurila A, Van Buskirk J. 2020. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195:3E67–86
    [Google Scholar]
  7. Baker RJ, Dickins B, Wickliffe JK, Khan FAA, Gaschak S et al. 2017. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evol. Appl. 10:8784–91
    [Google Scholar]
  8. Beninde J, Feldmeier S, Werner M, Peroverde D, Schulte U et al. 2016. Cityscape genetics: structural vs. functional connectivity of an urban lizard population. Mol. Ecol. 25:204984–5000
    [Google Scholar]
  9. Blount ZD, Lenski RE, Losos JB. 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:6415eaam5979
    [Google Scholar]
  10. Bolnick DI, Barrett RD, Oke KB, Rennison DJ, Stuart YE 2018. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49:303–30
    [Google Scholar]
  11. Borden JB, Flory SL. 2021. Urban evolution of invasive species. Front. Ecol. Environ. 19:184–91
    [Google Scholar]
  12. Brans KI, De Meester L. 2018. City life on fast lanes: urbanization induces an evolutionary shift towards a faster lifestyle in the water flea Daphnia. Funct. Ecol. 32:92225–40
    [Google Scholar]
  13. Brans KI, Jansen M, Vanoverbeke J, Tüzün N, Stoks R, De Meester L. 2017. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol.235218–27
    [Google Scholar]
  14. Brans KI, Stoks R, De Meester L. 2018. Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna. Proc. R. Soc. B 285: 1883.20180169
    [Google Scholar]
  15. Byrne K, Nichols RA. 1999. Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations. Heredity 82:17–15
    [Google Scholar]
  16. Campbell-Staton SC, Winchell KM, Rochette NC, Fredette J, Maayan I et al. 2020. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4:4652–58
    [Google Scholar]
  17. Capilla-Lasheras P, Dominoni DM, Babayan SA, O'Shaughnessy PJ, Mladenova M et al. 2017. Elevated immune gene expression is associated with poor reproductive success of urban blue tits. Front. Ecol. Evol. 5:64
    [Google Scholar]
  18. Charmantier A, Demeyrier V, Lambrechts M, Perret S, Grégoire A. 2017. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. 5:53
    [Google Scholar]
  19. Chejanovski ZA, Kolbe JJ. 2019. Close encounters of the urban kind: Predators influence prey body size variation in an urban landscape. Evol. Ecol. 33:6791–809
    [Google Scholar]
  20. Cheptou P-O, Carrue O, Rouifed S, Cantarel A 2008. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. PNAS 105:103796–99
    [Google Scholar]
  21. DeCandia AL, Brzeski KE, Heppenheimer E, Caro CV, Camenisch G et al. 2019a. Urban colonization through multiple genetic lenses: the city-fox phenomenon revisited. Ecol. Evol. 9:42046–60
    [Google Scholar]
  22. DeCandia AL, Henger CS, Krause A, Gormezano LJ, Weckel M et al. 2019b. Genetics of urban colonization: neutral and adaptive variation in coyotes (Canis latrans) inhabiting the New York metropolitan area. J. Urban Ecol. 5:1juz002
    [Google Scholar]
  23. Des Aunay GH, Slabbekoorn H, Nagle L, Passas F, Nicolas P, Draganoiu TI 2014. Urban noise undermines female sexual preferences for low-frequency songs in domestic canaries. Anim. Behav. 87:67–75
    [Google Scholar]
  24. Des Roches S, Brans KI, Lambert MR, Rivkin LR, Savage AM et al. 2021. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14:1248–67Considered how eco-evolutionary dynamics and feedbacks interact with human social dimensions.
    [Google Scholar]
  25. Diamond SE, Chick LD, Perez A, Strickler SA, Martin RA. 2018a. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B 285:20180036
    [Google Scholar]
  26. Diamond SE, Chick LD, Perez A, Strickler SA, Zhao C. 2018b. Evolution of plasticity in the city: Urban acorn ants can better tolerate more rapid increases in environmental temperature. Conserv. Physiol. 6:1coy030
    [Google Scholar]
  27. Diamond SE, Martin RA. 2016. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Research 5: 2835.
    [Google Scholar]
  28. Diamond SE, Martin RA. 2020a. Evolution is a double-edged sword, not a silver bullet, to confront climate change. Ann. N. Y. Acad. Sci. 1469:138–51
    [Google Scholar]
  29. Diamond SE, Martin RA 2020b. Evolutionary consequences of the urban heat island. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 91–110 New York: Oxford Univ. Press
    [Google Scholar]
  30. Diamond SE, Martin RA. 2021a. Buying time: plasticity and population persistence. Phenotypic Plasticity: Causes, Consequences, Controversies DW Pfennig 185–209 Boca Raton, FL: CRC Press
    [Google Scholar]
  31. Diamond SE, Martin RA. 2021b. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224:Suppl. 1jeb229336
    [Google Scholar]
  32. Donelson JM, Salinas S, Munday PL, Shama LN. 2018. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24:113–34
    [Google Scholar]
  33. Donihue CM, Lambert MR. 2015. Adaptive evolution in urban ecosystems. Ambio 44:3194–203Reviewed the criteria for demonstrating adaptive urban evolution.
    [Google Scholar]
  34. Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA. 2015. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:7569372–75
    [Google Scholar]
  35. Gillespie MAK, Baude M, Biesmeijer J, Boatman N, Budge GE et al. 2017. A method for the objective selection of landscape-scale study regions and sites at the national level. Methods Ecol. Evol. 8:111468–76
    [Google Scholar]
  36. Gorton AJ, Moeller DA, Tiffin P. 2018. Little plant, big city: a test of adaptation to urban environments in common ragweed (Ambrosia artemisiifolia). Proc. R. Soc. B 285: 1881.20180968
    [Google Scholar]
  37. Güneralp B, Reba M, Hales BU, Wentz EA, Seto KC. 2020. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15:4044015
    [Google Scholar]
  38. Halfwerk W. 2021. How should we study urban speciation?. Front. Ecol. Evol. 8:573545
    [Google Scholar]
  39. Halfwerk W, Blaas M, Kramer L, Hijner N, Trillo PA et al. 2019. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3:3374–80
    [Google Scholar]
  40. Harris SE, Munshi-South J. 2017. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. 26:226336–50
    [Google Scholar]
  41. Hasegawa M, Ligon RA, Giraudeau M, Watanabe M, McGraw KJ. 2014. Urban and colorful male house finches are less aggressive. Behav. Ecol. 25:3641–49
    [Google Scholar]
  42. Homola JJ, Loftin CS, Cammen KM, Helbing CC, Birol I et al. 2019. Replicated landscape genomics identifies evidence of local adaptation to urbanization in wood frogs. J. Hered. 110:6707–19
    [Google Scholar]
  43. Imhoff ML, Zhang P, Wolfe RE, Bounoua L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114:3504–13
    [Google Scholar]
  44. Irwin RE, Youngsteadt E, Warren PS, Bronstein JL 2020. The evolutionary ecology of mutualisms in urban landscapes. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 111–129 New York: Oxford Univ. Press
    [Google Scholar]
  45. Johnson MTJ, Munshi-South J. 2017. Evolution of life in urban environments. Science 358:6363eaam8327Provided a broad overview of evidence for different evolutionary mechanisms operating in cities.
    [Google Scholar]
  46. Johnson MTJ, Prashad CM, Lavoignat M, Saini HS. 2018. Contrasting the effects of natural selection, genetic drift and gene flow on urban evolution in white clover (Trifolium repens). Proc. R Soc. B 285: 1883.20181019
    [Google Scholar]
  47. Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:121225–41
    [Google Scholar]
  48. Kern EMA, Langerhans RB. 2019. Urbanization alters swimming performance of a stream fish. Front. Ecol. Evol. 6:229
    [Google Scholar]
  49. Kerstes NAG, Breeschoten T, Kalkman VJ, Schilthuizen M. 2019. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2:1264
    [Google Scholar]
  50. Kettlewell HBD. 1955. Selection experiments on industrial melanism in the Lepidoptera. Heredity 9:3323–42
    [Google Scholar]
  51. Kettlewell HBD. 1956. Further selection experiments on industrial melanism in the Lepidoptera. Heredity 10:3287–301
    [Google Scholar]
  52. Khimoun A, Doums C, Molet M, Kaufmann B, Peronnet R et al. 2020. Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biol. Lett. 16:120190741
    [Google Scholar]
  53. Kinnison MT, Hairston NG. 2007. Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. 21:3444–54
    [Google Scholar]
  54. Konorov EA. 2018. Genomic signatures of selection between urban and rural populations of black garden ant Lasius niger. Russ. J. Genet. 54:2218–25
    [Google Scholar]
  55. Lambert MR, Brans KI, Des Roches S, Donihue CM, Diamond SE 2020. Adaptive evolution in cities: progress and misconceptions. Trends Ecol. Evol. 36:239–57Reviewed the evidence for adaptive urban evolution from molecular and phenotypic studies.
    [Google Scholar]
  56. Lambert MR, Donihue CM. 2020. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4:903–10
    [Google Scholar]
  57. Losos JB. 2011. Convergence, adaptation, and constraint. Evolution 65:71827–40
    [Google Scholar]
  58. Luther DA, Phillips J, Derryberry EP. 2016. Not so sexy in the city: Urban birds adjust songs to noise but compromise vocal performance. Behav. Ecol. 27:1332–40
    [Google Scholar]
  59. Martin RA, Chick LD, Garvin ML, Diamond SE. 2021. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Evolution 75:4876–87
    [Google Scholar]
  60. Martin RA, Chick LD, Yilmaz AR, Diamond SE. 2019. Evolution, not transgenerational plasticity, explains the divergence of acorn ant thermal tolerance across an urban–rural temperature cline. Evol. Appl. 12:1678–87
    [Google Scholar]
  61. McNew SM, Beck D, Sadler-Riggleman I, Knutie SA, Koop JAH et al. 2017. Epigenetic variation between urban and rural populations of Darwin's finches. BMC Evol. Biol. 17:1183
    [Google Scholar]
  62. Mentges A, Blowes SA, Hodapp D, Hillebrand H, Chase JM. 2021. Effects of site-selection bias on estimates of biodiversity change. Conserv. Biol. 35:2688–98
    [Google Scholar]
  63. Miles LS, Rivkin LR, Johnson MTJ, Munshi-South J, Verrelli BC 2019. Gene flow and genetic drift in urban environments. Mol. Ecol. 28:184138–51Performed a meta-analysis of neutral variation to test whether cities enhanced or dampened gene flow.
    [Google Scholar]
  64. Mitchell-Olds T, Shaw RG. 1987. Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41:61149–61
    [Google Scholar]
  65. Mueller JC, Carrete M, Boerno S, Kuhl H, Tella JL, Kempenaers B. 2020. Genes acting in synapses and neuron projections are early targets of selection during urban colonization. Mol. Ecol. 29:183403–12
    [Google Scholar]
  66. Muñoz MM, Losos JB. 2017. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191:1E15–26
    [Google Scholar]
  67. Munshi-South J, Zolnik CP, Harris SE. 2016. Population genomics of the Anthropocene: Urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol. Appl. 9:4546–64
    [Google Scholar]
  68. Niemelä J. 1999. Is there a need for a theory of urban ecology?. Urban Ecosyst 3:157–65
    [Google Scholar]
  69. Niemelä J, Breuste JH, Guntenspergen G, McIntyre NE, Elmqvist T, James P 2011. Urban Ecology: Patterns, Processes, and Applications Oxford, UK: Oxford Univ. Press
  70. Ouyang JQ, Isaksson C, Schmidt C, Hutton P, Bonier F, Dominoni D. 2018. A new framework for urban ecology: an integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. 58:5915–28
    [Google Scholar]
  71. Oziolor EM, Reid NM, Yair S, Lee KM, VerPloeg SG et al. 2019. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364:6439455–57
    [Google Scholar]
  72. Perrier C, Caizergues A, Charmantier A 2020. Adaptation genomics in urban environments. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 74–90 New York: Oxford Univ. Press
    [Google Scholar]
  73. Perrier C, Lozano del Campo A, Szulkin M, Demeyrier V, Gregoire A, Charmantier A 2018. Great tits and the city: distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evol. Appl. 11:5593–613
    [Google Scholar]
  74. Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J et al. 2020. Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild. Funct. Ecol. 34:1205–14
    [Google Scholar]
  75. Ravinet M, Elgvin TO, Trier C, Aliabadian M, Gavrilov A, Sætre G-P. 2018. Signatures of human-commensalism in the house sparrow genome. Proc. R. Soc. B 285: 1884.20181246
    [Google Scholar]
  76. Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK et al. 2016. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354:63171305–8
    [Google Scholar]
  77. Reznick DN, Losos J, Travis J. 2019. From low to high gear: There has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22:2233–44
    [Google Scholar]
  78. Rivkin LR, Santangelo JS, Alberti M, Aronson MFJ, de Keyzer CW et al. 2019. A roadmap for urban evolutionary ecology. Evol. Appl. 12:3384–98Developed a broad overview of basic and applied research topics in urban evolutionary biology.
    [Google Scholar]
  79. Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC. 2015. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10:6516–25
    [Google Scholar]
  80. Santangelo JS, Miles LS, Breitbart ST, Murray-Stoker D, Rivkin LR et al. 2020a. Urban environments as a framework to study parallel evolution. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 36–53 New York: Oxford Univ. Press
    [Google Scholar]
  81. Santangelo JS, Rivkin LR, Advenard C, Thompson KA. 2020b. Multivariate phenotypic divergence along an urbanization gradient. Biol. Lett. 16:920200511
    [Google Scholar]
  82. Schell CJ. 2018. Urban evolutionary ecology and the potential benefits of implementing genomics. J. Hered. 109:2138–51Reviewed the use of genomic approaches to investigate adaptive urban evolution.
    [Google Scholar]
  83. Schell CJ, Dyson K, Fuentes TL, Roches SD, Harris NC et al. 2020. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369:6510eaay4497Considered the consequences of systemic racism on urban landscapes and urban evolution.
    [Google Scholar]
  84. Sepp T, McGraw KJ, Giraudeau M 2020. Urban sexual selection. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 234–52 New York: Oxford Univ. Press
    [Google Scholar]
  85. Sepp T, McGraw KJ, Kaasik A, Giraudeau M. 2018. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24:41452–69
    [Google Scholar]
  86. Service PM, Rose MR. 1985. Genetic covariation among life-history components: the effect of novel environments. Evolution 39:4943–45
    [Google Scholar]
  87. Sgrò CM, Hoffmann AA. 2004. Genetic correlations, tradeoffs and environmental variation. Heredity 93:3241–48
    [Google Scholar]
  88. Shaffer HB. 2018. Urban biodiversity arks. Nat. Sustain. 1:12725–27
    [Google Scholar]
  89. Shultz AJ, Adams BJ, Bell KC, Ludt WB, Pauly GB, Vendetti JE. 2021. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol. Appl. 14:233–47
    [Google Scholar]
  90. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. 2013. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53:4545–56
    [Google Scholar]
  91. Snell-Rood EC, Kobiela ME, Sikkink KL, Shephard AM. 2018. Mechanisms of plastic rescue in novel environments. Annu. Rev. Ecol. Evol. Syst. 49:331–54
    [Google Scholar]
  92. Somers CM, Yauk CL, White PA, Parfett CLJ, Quinn JS 2002. Air pollution induces heritable DNA mutations. PNAS 99:2515904–7
    [Google Scholar]
  93. Stabler LB, Martin CA, Brazel AJ. 2005. Microclimates in a desert city were related to land use and vegetation index. Urban For. Urban Green 3:3–4137–47
    [Google Scholar]
  94. Start D, Bonner C, Weis AE, Gilbert B. 2018. Consumer-resource interactions along urbanization gradients drive natural selection. Evolution 72:91863–73
    [Google Scholar]
  95. Su Q, Chen Y, Li M, Ma J, Wang B et al. 2019. Genetic characterization and molecular evolution of urban Seoul virus in Southern China. Viruses 11:121137
    [Google Scholar]
  96. Szulkin M, Garroway CJ, Corsini M, Kotarba AZ, Dominoni D. 2020a. How to quantify urbanization when testing for urban evolution?. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 13–35 New York: Oxford Univ. Press
    [Google Scholar]
  97. Szulkin M, Munshi-South J, Charmantier A. 2020b. Urban Evolutionary Biology New York: Oxford Univ. PressCompiled a comprehensive edited volume that synthesizes a vast range of urban evolution topics.
  98. Theodorou P, Baltz LM, Paxton RJ, Soro A. 2021. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 14:153–68
    [Google Scholar]
  99. Theodorou P, Radzevičiūtė R, Kahnt B, Soro A, Grosse I, Paxton RJ. 2018. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B 285: 1877.20172806
    [Google Scholar]
  100. Thompson KA, Renaudin M, Johnson MTJ. 2016. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B 283: 1845.20162180
    [Google Scholar]
  101. Thompson KA, Rieseberg LH, Schluter D. 2018. Speciation and the city. Trends Ecol. Evol. 33:11815–26
    [Google Scholar]
  102. Thorson JLM, Smithson M, Sadler-Riggleman I, Beck D, Dybdahl M, Skinner MK. 2019. Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environ. Epigenetics. 5:4dvz020
    [Google Scholar]
  103. Travis J. 2020. Where is natural history in ecological, evolutionary, and behavioral science?. Am. Nat. 196:11–8
    [Google Scholar]
  104. Turo KJ, Gardiner MM. 2020. The balancing act of urban conservation. Nat. Commun. 11:13773
    [Google Scholar]
  105. Tüzün N, Op de Beeck L, Brans KI, Janssens L, Stoks R. 2017a. Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect. Evol. Appl. 10:1067–75
    [Google Scholar]
  106. Tüzün N, Op de Beeck L, Stoks R. 2017b. Sexual selection reinforces a higher flight endurance in urban damselflies. Evol. Appl. 10:7694–703
    [Google Scholar]
  107. Van Geffen KG, Groot AT, Van Grunsven RH, Donners M, Berendse F, Veenendaal EM. 2015. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 40:4401–8
    [Google Scholar]
  108. Verhoeven KJ, Vonholdt BM, Sork VL. 2016. Epigenetics in ecology and evolution: what we know and what we need to know. Mol. Ecol. 25:81631–38
    [Google Scholar]
  109. Watson H, Powell D, Salmón P, Jacobs A, Isaksson C. 2021. Urbanization is associated with modifications in DNA methylation in a small passerine bird. Evol. Appl. 14:185–98
    [Google Scholar]
  110. Weldon WFR 1899. Address by W.F.R. Weldon, M.A., F.R.S., Professor of Comparative Anatomy and Zoology, University College, London, President of the Section Address presented at the 68th meeting of the British Association for the Advancement of Science, Section D Bristol, UK: Sep. 8. https://www.biodiversitylibrary.org/item/95459#page/1049/mode/1up
  111. Wellborn GA, Langerhans RB. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5:1176–95
    [Google Scholar]
  112. Whitlock MC. 2008. Evolutionary inference from QST. Mol. Ecol. 17:81885–96
    [Google Scholar]
  113. Winchell KM, Maayan I, Fredette JR, Revell LJ. 2018. Linking locomotor performance to morphological shifts in urban lizards. Proc. R. Soc. B 285: 1880.20180229
    [Google Scholar]
  114. Winchell KM, Reynolds RG, Prado-Irwin SR, Puente-Rolón AR, Revell LJ. 2016. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70:51009–22
    [Google Scholar]
  115. Winchell KM, Schliep KP, Mahler DL, Revell LJ. 2020. Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution 74:71274–88
    [Google Scholar]
  116. Wood CW, Brodie ED III 2015. Environmental effects on the structure of the G-matrix. Evolution 69:112927–40
    [Google Scholar]
  117. Yauk CL, Quinn JS 1996. Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. PNAS 93:2212137–41
    [Google Scholar]
  118. Yeh PJ. 2004. Rapid evolution of a sexually selected trait following population establishment in a novel habitat. Evolution 58:1166–74
    [Google Scholar]
  119. Yilmaz AR, Diamond SE, Martin RA. 2021. Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Evol. Appl 14:12–23
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-021402
Loading
/content/journals/10.1146/annurev-ecolsys-012021-021402
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error