1932

Abstract

For nearly three decades, the sequence of the human mitochondrial genome (mtDNA) has provided a molecular framework for understanding maternally inherited diseases. However, the vast majority of human mitochondrial disorders are caused by nuclear genome defects, which is not surprising since the mtDNA encodes only 13 proteins. Advances in genomics, mass spectrometry, and computation have only recently made it possible to systematically identify the complement of over 1,000 proteins that comprise the mammalian mitochondrial proteome. Here, we review recent progress in characterizing the mitochondrial proteome and highlight insights into its complexity, tissue heterogeneity, evolutionary origins, and biochemical versatility. We then discuss how this proteome is being used to discover the genetic basis of respiratory chain disorders as well as to expand our definition of mitochondrial disease. Finally, we explore future prospects and challenges for using the mitochondrial proteome as a foundation for systems analysis of the organelle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-082509-141720
2010-09-22
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/genom/11/1/annurev-genom-082509-141720.html?itemId=/content/journals/10.1146/annurev-genom-082509-141720&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi J, Kumar C, Zhang Y, Mann M. 1.  2007. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell Proteomics 6:1257–73 [Google Scholar]
  2. Aghili M, Zahedi F, Rafiee E. 2.  2009. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neurooncol. 91:233–36 [Google Scholar]
  3. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR. 3.  et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65 [Google Scholar]
  4. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC. 4.  et al. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–40 [Google Scholar]
  5. Aponte AM, Phillips D, Harris RA, Blinova K, French S. 5.  et al. 2009. 32P labeling of protein phosphorylation and metabolite association in the mitochondria matrix. Methods Enzymol. 457:63–80 [Google Scholar]
  6. Aponte AM, Phillips D, Hopper RK, Johnson DT, Harris RA. 6.  et al. 2009. Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J. Proteome Res. 8:2679–95 [Google Scholar]
  7. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. 7.  2008. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 116:597–602 [Google Scholar]
  8. Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A. 8.  et al. 2009. MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat. Struct. Mol. Biol. 16:198–206 [Google Scholar]
  9. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. 9.  2002. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305 [Google Scholar]
  10. Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK. 10.  2009. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet. 5:e1000590 [Google Scholar]
  11. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. 11.  2002. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 59:1406–11 [Google Scholar]
  12. Bogenhagen DF, Rousseau D, Burke S. 12.  2008. The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 283:3665–75 [Google Scholar]
  13. Boja ES, Phillips D, French SA, Harris RA, Balaban RS. 13.  2009. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J. Proteome Res. 8:4665–75 [Google Scholar]
  14. Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E. 14.  et al. 2004. Clinical and molecular findings in children with complex I deficiency. Biochim. Biophys. Acta 1659:136–47 [Google Scholar]
  15. Calvo S, Jain M, Xie X, Sheth SA, Chang B. 15.  et al. 2006. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 38:576–82 [Google Scholar]
  16. Capaldi RA, Halphen DG, Zhang YZ, Yanamura W. 16.  1988. Complexity and tissue specificity of the mitochondrial respiratory chain. J. Bioenerg. Biomembr. 20:291–311 [Google Scholar]
  17. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. 17.  2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–44 [Google Scholar]
  18. Chinnery PF. 18.  2003. Searching for nuclear-mitochondrial genes. Trends Genet. 19:60–62 [Google Scholar]
  19. Cizkova A, Stranecky V, Mayr JA, Tesarova M, Havlickova V. 19.  et al. 2008. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 40:1288–90 [Google Scholar]
  20. Clamp M, Fry B, Kamal M, Xie X, Cuff J. 20.  et al. 2007. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl. Acad. Sci. USA 104:19428–33 [Google Scholar]
  21. Claros MG, Vincens P. 21.  1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241:779–86 [Google Scholar]
  22. Cotter D, Guda P, Fahy E, Subramaniam S. 22.  2004. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 32:D463–67 [Google Scholar]
  23. Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA, Martinou JC. 23.  2003. Proteomic analysis of the mouse liver mitochondrial inner membrane. J. Biol. Chem. 278:41566–71 [Google Scholar]
  24. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 24.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739 [Google Scholar]
  25. DeRisi JL, Iyer VR, Brown PO. 25.  1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–86 [Google Scholar]
  26. DiMauro S, Davidzon G. 26.  2005. Mitochondrial DNA and disease. Ann. Med. 37:222–32 [Google Scholar]
  27. DiMauro S, Hirano M, Schon EA. 27.  2006. Mitochondrial Medicine New York: Informa Healthcare348
  28. DiMauro S, Schon EA. 28.  2003. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348:2656–68 [Google Scholar]
  29. Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N. 29.  et al. 2002. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13:847–53 [Google Scholar]
  30. Elstner M, Andreoli C, Ahting U, Tetko I, Klopstock T. 30.  et al. 2008. MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol. Biotechnol. 40:306–15 [Google Scholar]
  31. Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 31.  2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300:1005–16 [Google Scholar]
  32. Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG. 32.  2003. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–95 [Google Scholar]
  33. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR. 33.  et al. 2005. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J. Biol. Chem. 280:39609–15 [Google Scholar]
  34. Forner F, Foster LJ, Campanaro S, Valle G, Mann M. 34.  2006. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell Proteomics 5:608–19 [Google Scholar]
  35. Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M. 35.  2009. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab. 10:324–35 [Google Scholar]
  36. Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X. 36.  et al. 2006. A mammalian organelle map by protein correlation profiling. Cell 125:187–99 [Google Scholar]
  37. Friedberg I. 37.  2006. Automated protein function prediction—the genomic challenge. Brief Bioinform. 7:225–42 [Google Scholar]
  38. Gabaldon T, Huynen MA. 38.  2007. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput. Biol. 3:e219 [Google Scholar]
  39. Gabaldon T, Rainey D, Huynen MA. 39.  2005. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 348:857–70 [Google Scholar]
  40. Gaston D, Tsaousis AD, Roger AJ. 40.  2009. Predicting proteomes of mitochondria and related organelles from genomic and expressed sequence tag data. Methods Enzymol. 457:21–47 [Google Scholar]
  41. Guda C. 41.  2006. pTARGET: a web server for predicting protein subcellular localization. Nucleic Acids Res. 34:W210–13 [Google Scholar]
  42. Guda C, Fahy E, Subramaniam S. 42.  2004. MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics 20:1785–94 [Google Scholar]
  43. Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL. 43.  2009. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem. 284:9011–15 [Google Scholar]
  44. Holt IJ, Harding AE, Morgan-Hughes JA. 44.  1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–19 [Google Scholar]
  45. Huang B, Bates M, Zhuang X. 45.  2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016 [Google Scholar]
  46. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW. 46.  et al. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–91 [Google Scholar]
  47. Huynen MA, de Hollander M, Szklarczyk R. 47.  2009. Mitochondrial proteome evolution and genetic disease. Biochim. Biophys. Acta. 1792:1122–29 [Google Scholar]
  48. Ingman M, Gyllensten U. 48.  2006. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res. 34:D749–51 [Google Scholar]
  49. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C. 49.  et al. 2009. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37:D412–16 [Google Scholar]
  50. Johnson DT, Harris RA, Blair PV, Balaban RS. 50.  2007. Functional consequences of mitochondrial proteome heterogeneity. Am. J. Physiol. Cell Physiol. 292:C698–707 [Google Scholar]
  51. Johnson DT, Harris RA, French S, Blair PV, You J. 51.  et al. 2007. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell Physiol. 292:C689–97 [Google Scholar]
  52. King BR, Guda C. 52.  2007. ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol. 8:R68 [Google Scholar]
  53. Kirby DM, Thorburn DR. 53.  2008. Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Res. Hum. Genet. 11:395–411 [Google Scholar]
  54. Kislinger T, Cox B, Kannan A, Chung C, Hu P. 54.  et al. 2006. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125:173–86 [Google Scholar]
  55. Kolker S, Mayatepek E, Hoffmann GF. 55.  2002. White matter disease in cerebral organic acid disorders: clinical implications and suggested pathomechanisms. Neuropediatrics 33:225–31 [Google Scholar]
  56. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J. 56.  et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81 [Google Scholar]
  57. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M. 57.  et al. 2002. Subcellular localization of the yeast proteome. Genes Dev. 16:707–19 [Google Scholar]
  58. Kumar GK, Prabhakar NR. 58.  2008. Post-translational modification of proteins during intermittent hypoxia. Respir. Physiol. Neurobiol. 164:272–76 [Google Scholar]
  59. Kumar M, Verma R, Raghava GP. 59.  2006. Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J. Biol. Chem. 281:5357–63 [Google Scholar]
  60. Kutik S, Stroud DA, Wiedemann N, Pfanner N. 60.  2009. Evolution of mitochondrial protein biogenesis. Biochim. Biophys. Acta 1790:409–15 [Google Scholar]
  61. Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI. 61.  et al. 2000. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21:3427–40 [Google Scholar]
  62. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 62.  1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–90 [Google Scholar]
  63. Marchenko ND, Zaika A, Moll UM. 63.  2000. Death signal–induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275:16202–12 [Google Scholar]
  64. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. 64.  1999. A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86 [Google Scholar]
  65. McFarland R, Elson JL, Taylor RW, Howell N, Turnbull DM. 65.  2004. Assigning pathogenicity to mitochondrial tRNA mutations: when “definitely maybe” is not good enough. Trends Genet. 20:591–96 [Google Scholar]
  66. Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D. 66.  et al. 2006. The LIFEdb database in 2006. Nucleic Acids Res. 34:D415–18 [Google Scholar]
  67. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T. 67.  et al. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11:577–90 [Google Scholar]
  68. Milenkovic D, Ramming T, Muller JM, Wenz LS, Gebert N. 68.  et al. 2009. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol. Biol. Cell 20:2530–39 [Google Scholar]
  69. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM. 69.  2006. Sequence variation in mitochondrial complex I genes: Mutation or polymorphism?. J. Med. Genet. 43:175–9 [Google Scholar]
  70. Montoya J, Lopez-Gallardo E, Diez-Sanchez C, Lopez-Perez MJ, Ruiz-Pesini E. 70.  2009. 20 years of human mtDNA pathologic point mutations: carefully reading the pathogenicity criteria. Biochim. Biophys. Acta 1787:476–83 [Google Scholar]
  71. Montoya J, Ojala D, Attardi G. 71.  1981. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290:465–70 [Google Scholar]
  72. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR. 72.  et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–40 [Google Scholar]
  73. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J. 73.  et al. 2004. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. USA 101:6570–75 [Google Scholar]
  74. Mootha VK, Lepage P, Miller K, Bunkenborg J, Reich M. 74.  et al. 2003. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. USA 100:605–10 [Google Scholar]
  75. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S. 75.  et al. 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34:267–73 [Google Scholar]
  76. Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M. 76.  et al. 2006. Mitochondrial disease criteria: diagnostic applications in children. Neurology 67:1823–6 [Google Scholar]
  77. Nakai K, Horton P. 77.  1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24:34–36 [Google Scholar]
  78. Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR. 78.  2008. Transcriptional responses to intermittent hypoxia. Respir. Physiol. Neurobiol. 164:277–81 [Google Scholar]
  79. Ng SB. 79.  et al. 2009. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet. 42:30–35 [Google Scholar]
  80. Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A. 80.  et al. 2009. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10:119–30 [Google Scholar]
  81. Ogilvie I, Kennaway NG, Shoubridge EA. 81.  2005. A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J. Clin. Invest. 115:2784–92 [Google Scholar]
  82. Ojala D, Montoya J, Attardi G. 82.  1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–74 [Google Scholar]
  83. Ozawa T, Sako Y, Sato M, Kitamura T, Umezawa Y. 83.  2003. A genetic approach to identifying mitochondrial proteins. Nat. Biotechnol. 21:287–93 [Google Scholar]
  84. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB. 84.  et al. 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–23 [Google Scholar]
  85. Palmfeldt J, Vang S, Stenbroen V, Pedersen CB, Christensen JH. 85.  et al. 2009. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Sci. 7:20 [Google Scholar]
  86. Pancrudo J, Shanske S, Coku J, Lu J, Mardach R. 86.  et al. 2007. Mitochondrial myopathy associated with a novel mutation in mtDNA. Neuromuscul. Disord. 17:651–54 [Google Scholar]
  87. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 87.  1999. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96:4285–88 [Google Scholar]
  88. Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C. 88.  et al. 2006. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet. 2:e170 [Google Scholar]
  89. Rabilloud T, Kieffer S, Procaccio V, Louwagie M, Courchesne PL. 89.  et al. 1998. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 19:1006–14 [Google Scholar]
  90. Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC. 90.  et al. 2009. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41:1016–21 [Google Scholar]
  91. Reynier P, Amati-Bonneau P, Verny C, Olichon A, Simard G. 91.  et al. 2004. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J. Med. Genet. 41:e110 [Google Scholar]
  92. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC. 92.  et al. 2007. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35:D823–28 [Google Scholar]
  93. Scharfe C, Lu HH, Neuenburg JK, Allen EA, Li GC. 93.  et al. 2009. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput. Biol. 5:e1000374 [Google Scholar]
  94. Scheffler NK, Miller SW, Carroll AK, Anderson C, Davis RE. 94.  et al. 2001. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion 1:161–79 [Google Scholar]
  95. Schilling B, Yoo CB, Collins CJ, Gibson BW. 95.  2004. Determining cysteine oxidation status using differential alkylation. Int. J. Mass Spectrom. 236:117–27 [Google Scholar]
  96. Schuler AM, Gower BA, Matern D, Rinaldo P, Vockley J, Wood PA. 96.  2005. Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid beta-oxidation. Mol. Genet. Metab. 85:7–11 [Google Scholar]
  97. Small I, Peeters N, Legeai F, Lurin C. 97.  2004. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–90 [Google Scholar]
  98. Smith AC, Robinson AJ. 98.  2009. MitoMiner, an integrated database for the storage and analysis of mitochondrial proteomics data. Mol. Cell Proteomics 8:1324–37 [Google Scholar]
  99. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D'Adamo P. 99.  et al. 2006. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 38:570–75 [Google Scholar]
  100. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS. 100.  et al. 2002. Systematic screen for human disease genes in yeast. Nat. Genet. 31:400–4 [Google Scholar]
  101. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR. 101.  et al. 2002. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99:4465–70 [Google Scholar]
  102. Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R. 102.  et al. 2008. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am. J. Hum. Genet. 83:468–78 [Google Scholar]
  103. Taylor RW, Schaefer AM, McDonnell MT, Petty RK, Thomas AM. 103.  et al. 2004. Catastrophic presentation of mitochondrial disease due to a mutation in the tRNA(His) gene. Neurology 62:1420–23 [Google Scholar]
  104. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE. 104.  et al. 2003. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21:281–6 [Google Scholar]
  105. Thiele I, Price ND, Vo TD, Palsson BO. 105.  2005. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J. Biol. Chem. 280:11683–95 [Google Scholar]
  106. Tiranti V, D'Adamo P, Briem E, Ferrari G, Mineri R. 106.  et al. 2004. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet. 74:239–52 [Google Scholar]
  107. Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R. 107.  et al. 2009. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 15:200–5 [Google Scholar]
  108. Tong WH, Rouault T. 108.  2000. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 19:5692–700 [Google Scholar]
  109. Tranebjaerg L, Jensen PK, Van Ghelue M, Vnencak-Jones CL, Sund S. 109.  et al. 2001. Neuronal cell death in the visual cortex is a prominent feature of the X-linked recessive mitochondrial deafness–dystonia syndrome caused by mutations in the TIMM8a gene. Ophthalmic. Genet. 22:207–23 [Google Scholar]
  110. Tyni T, Kivela T, Lappi M, Summanen P, Nikoskelainen E, Pihko H. 110.  1998. Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: a new type of hereditary metabolic chorioretinopathy. Ophthalmology 105:810–24 [Google Scholar]
  111. Uusimaa J, Finnila S, Remes AM, Rantala H, Vainionpaa L. 111.  et al. 2004. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics 114:443–50 [Google Scholar]
  112. Van Goethem G, Lofgren A, Dermaut B, Ceuterick C, Martin JJ, Van Broeckhoven C. 112.  2003. Digenic progressive external ophthalmoplegia in a sporadic patient: recessive mutations in POLG and C10orf2/Twinkle. Hum. Mutat. 22:175–76 [Google Scholar]
  113. Vieira HL, Haouzi D, El Hamel C, Jacotot E, Belzacq AS. 113.  et al. 2000. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ. 7:1146–54 [Google Scholar]
  114. Vo TD, Greenberg HJ, Palsson BO. 114.  2004. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279:39532–40 [Google Scholar]
  115. Vockley J. 115.  2008. Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J. Inherit. Metab. Dis. 31:619–29 [Google Scholar]
  116. Walker UA, Collins S, Byrne E. 116.  1996. Respiratory chain encephalomyopathies: a diagnostic classification. Eur. Neurol. 36:260–67 [Google Scholar]
  117. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG. 117.  et al. 1988. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242:1427–30 [Google Scholar]
  118. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA. 118.  et al. 1988. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55:601–10 [Google Scholar]
  119. Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B. 119.  et al. 2009. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41:833–37 [Google Scholar]
  120. Wiedemann N, Pfanner N, Ryan MT. 120.  2001. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20:951–60 [Google Scholar]
  121. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA. 121.  et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73 [Google Scholar]
  122. Yoshida A. 122.  1992. Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 2:139–47 [Google Scholar]
  123. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. 123.  2009. Inherited mitochondrial optic neuropathies. J. Med. Genet. 46:145–58 [Google Scholar]
  124. Zhu X, Peng X, Guan MX, Yan Q. 124.  2009. Pathogenic mutations of nuclear genes associated with mitochondrial disorders. Acta Biochim. Biophys. Sin. (Shanghai) 41:179–87 [Google Scholar]
  125. Zuchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V. 125.  et al. 2006. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59:276–81 [Google Scholar]
/content/journals/10.1146/annurev-genom-082509-141720
Loading
/content/journals/10.1146/annurev-genom-082509-141720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error