1932

Abstract

Sudden cardiac death (SCD), a sudden pulseless condition due to cardiac arrhythmia, remains a major public health problem despite recent progress in the treatment and prevention of overall coronary heart disease. In this review, we examine the evidence for genetic susceptibility to SCD in order to provide biological insight into the pathogenesis of this devastating disease and to explore the potential for genetics to impact clinical management of SCD risk. Both candidate gene approaches and unbiased genome-wide scans have identified novel biological pathways contributing to SCD risk. Although risk stratification in the general population remains an elusive goal, several studies point to the potential utility of these common genetic variants in high-risk individuals. Finally, we highlight novel methodological approaches to deciphering the molecular mechanisms involved in arrhythmogenesis. Although further epidemiological and clinical applications research is needed, it is increasingly clear that genetic approaches are yielding important insights into SCD that may impact the public health burden imposed by SCD and its associated outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090711-163841
2012-09-22
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/genom/13/1/annurev-genom-090711-163841.html?itemId=/content/journals/10.1146/annurev-genom-090711-163841&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman MJ. 1.  2005. Genotype-phenotype relationships in congenital long QT syndrome. J. Electrocardiol. 38:64–68 [Google Scholar]
  2. Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE. 2.  et al. 2010. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ. Arrhythm. Electrophysiol. 3:222–29 [Google Scholar]
  3. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ. 3.  et al. 2008. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 117:16–23 [Google Scholar]
  4. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. 4.  1991. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83:1888–94 [Google Scholar]
  5. Amin AS, Giudicessi JR, Tijsen AJ, Spanjaart AM, Reckman YJ. 5.  et al. 2012. Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur. Heart J. 33:714–23 [Google Scholar]
  6. Antzelevitch C. 6.  2006. Brugada syndrome. Pacing Clin. Electrophysiol. 29:1130–59 [Google Scholar]
  7. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC. 7.  et al. 2007. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–49 [Google Scholar]
  8. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M. 8.  et al. 2011. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 7:e1002158 [Google Scholar]
  9. Arking DE, Khera A, Xing C, Kao WH, Post W. 9.  et al. 2009. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS ONE 4:e4333 [Google Scholar]
  10. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C. 10.  et al. 2006. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38:644–51 [Google Scholar]
  11. Asimaki A, Tandri H, Huang H, Halushka MK, Gautam S. 11.  et al. 2009. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 360:1075–84 [Google Scholar]
  12. Asimit J, Zeggini E. 12.  2010. Rare variant association analysis methods for complex traits. Annu. Rev. Genet. 44:293–308 [Google Scholar]
  13. Bansal V, Libiger O, Torkamani A, Schork NJ. 13.  2010. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 11:773–85 [Google Scholar]
  14. Basu S, Pan W. 14.  2011. Comparison of statistical tests for disease association with rare variants. Genet. Epidemiol. 35:606–19 [Google Scholar]
  15. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JS. 15.  et al. 2010. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat. Genet. 42:688–91 [Google Scholar]
  16. Bigger JT Jr, Whang W, Rottman JN, Kleiger RE, Gottlieb CD. 16.  et al. 1999. Mechanisms of death in the CABG Patch trial: a randomized trial of implantable cardiac defibrillator prophylaxis in patients at high risk of death after coronary artery bypass graft surgery. Circulation 99:1416–21 [Google Scholar]
  17. Bjerregaard P, Gussak I. 17.  2005. Short QT syndrome. Ann. Noninvasive Electrocardiol. 10:436–40 [Google Scholar]
  18. Bowles NE, Richardson PJ, Olsen EG, Archard LC. 18.  1986. Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120–23 [Google Scholar]
  19. Burke A, Creighton W, Mont E, Li L, Hogan S. 19.  et al. 2005. Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation 112:798–802 [Google Scholar]
  20. Busjahn A, Knoblauch H, Faulhaber HD, Boeckel T, Rosenthal M. 20.  et al. 1999. QT interval is linked to 2 long-QT syndrome loci in normal subjects. Circulation 99:3161–64 [Google Scholar]
  21. Carter N, Snieder H, Jeffery S, Saumarez R, Varma C. 21.  et al. 2000. QT interval in twins. J. Hum. Hypertens. 14:389–90 [Google Scholar]
  22. Cerrone M, Priori SG. 22.  2011. Genetics of sudden death: focus on inherited channelopathies. Eur. Heart J. 32:2109–18 [Google Scholar]
  23. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y. 23.  et al. 2008. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl. Acad. Sci. USA 105:4477–82 [Google Scholar]
  24. Chen J, Xie X, Zhu J, Tao Q, Wang X. 24.  2004. Single-nucleotide polymorphisms in SCN5A gene in Chinese Han population and their correlation with cardiac arrhythmias. Genet. Med. 6:159 [Google Scholar]
  25. Chen Y, Zhu J, Lum PY, Yang X, Pinto S. 25.  et al. 2008. Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–35 [Google Scholar]
  26. Chugh SS, Jui J, Gunson K, Stecker EC, John BT. 26.  et al. 2004. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large US community. J. Am. Coll. Cardiol. 44:1268–75 [Google Scholar]
  27. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. 27.  2009. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10:184–94 [Google Scholar]
  28. Crotti L, Lundquist AL, Insolia R, Pedrazzini M, Ferrandi C. 28.  et al. 2005. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112:1251–58 [Google Scholar]
  29. Crotti L, Monti MC, Insolia R, Peljto A, Goosen A. 29.  et al. 2009. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120:1657–63 [Google Scholar]
  30. Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H. 30.  et al. 2005. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation 112:3823–32 [Google Scholar]
  31. de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE. 31.  1999. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly: the Rotterdam Study. Eur. Heart J. 20:278–84 [Google Scholar]
  32. Dekker JM, Crow RS, Hannan PJ, Schouten EG, Folsom AR. 32.  2004. Heart rate-corrected QT interval prolongation predicts risk of coronary heart disease in black and white middle-aged men and women: the ARIC study. J. Am. Coll. Cardiol. 43:565–71 [Google Scholar]
  33. Dekker JM, Schouten EG, Klootwijk P, Pool J, Kromhout D. 33.  1994. Association between QT interval and coronary heart disease in middle-aged and elderly men. The Zutphen Study. Circulation 90:779–85 [Google Scholar]
  34. Dekker LR, Bezzina CR, Henriques JP, Tanck MW, Koch KT. 34.  et al. 2006. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation 114:1140–45 [Google Scholar]
  35. Demirovic J, Myerburg RJ. 35.  1994. Epidemiology of sudden coronary death: an overview. Prog. Cardiovasc. Dis. 37:39–48 [Google Scholar]
  36. de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, van Ree JW, Daemen MJ. 36.  et al. 1997. Out-of-hospital cardiac arrest in the 1990's: a population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30:1500–5 [Google Scholar]
  37. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C. 37.  et al. 2009. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325:1246–50 [Google Scholar]
  38. Doolan A, Langlois N, Chiu C, Ingles J, Lind JM, Semsarian C. 38.  2008. Postmortem molecular analysis of KCNQ1 and SCN5A genes in sudden unexplained death in young Australians. Int. J. Cardiol. 127:138–41 [Google Scholar]
  39. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD. 39.  et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73 [Google Scholar]
  40. Eijgelsheim M, Aarnoudse AL, Rivadeneira F, Kors JA, Witteman JC. 40.  et al. 2008. Identification of a common variant at the NOS1AP locus strongly associated to QT-interval duration. Hum. Mol. Genet. 18:347–57 [Google Scholar]
  41. Eijgelsheim M, Newton-Cheh C, Aarnoudse AL, van Noord C, Witteman JC. 41.  et al. 2009. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam Study. Hum. Mol. Genet. 18:4213–18 [Google Scholar]
  42. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, Muller M. 42.  et al. 2010. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum. Mol. Genet. 19:3885–94 [Google Scholar]
  43. Elming H, Holm E, Jun L, Torp-Pedersen C, Kober L. 43.  et al. 1998. The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens. Eur. Heart J. 19:1391–400 [Google Scholar]
  44. Fang DH, Wu LQ, Lu L, Lou S, Gu G. 44.  et al. 2008. Association of human SCN5A polymorphisms with idiopathic ventricular arrhythmia in a Chinese Han cohort. Circ. J. 72:592–97 [Google Scholar]
  45. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. 45.  1995. Sudden coronary death: frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92:1701–9 [Google Scholar]
  46. Fisher JD, Buxton AE, Lee KL, Packer DL, Echt DS. 46.  et al. 2007. Designation and distribution of events in the Multicenter UnSustained Tachycardia Trial (MUSTT). Am. J. Cardiol. 100:76–83 [Google Scholar]
  47. Friedlander Y, Siscovick DS, Arbogast P, Psaty BM, Weinmann S. 47.  et al. 2002. Sudden death and myocardial infarction in first degree relatives as predictors of primary cardiac arrest. Atherosclerosis 162:211–16 [Google Scholar]
  48. Gaborit N, Wichter T, Varro A, Szuts V, Lamirault G. 48.  et al. 2009. Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases. Eur. Heart J. 30:487–96 [Google Scholar]
  49. Gillum RF. 49.  1989. Sudden coronary death in the United States: 1980–1985. Circulation 79:756–65 [Google Scholar]
  50. Greenberg H, Case RB, Moss AJ, Brown MW, Carroll ER, Andrews ML. 50.  2004. Analysis of mortality events in the Multicenter Automatic Defibrillator Implantation Trial (MADIT-II). J. Am. Coll. Cardiol. 43:1459–65 [Google Scholar]
  51. Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV. 51.  et al. 2008. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol. 6:e1 [Google Scholar]
  52. Hinkle LE Jr, Thaler HT. 52.  1982. Clinical classification of cardiac deaths. Circulation 65:457–64 [Google Scholar]
  53. Ho CY, Seidman CE. 53.  2006. A contemporary approach to hypertrophic cardiomyopathy. Circulation 113:e858–62 [Google Scholar]
  54. Holmberg M, Holmberg S, Herlitz J. 54.  2001. An alternative estimate of the disappearance rate of ventricular fibrillation in out-of-hospital cardiac arrest in Sweden. Resuscitation 49:219–20 [Google Scholar]
  55. Jeff JM, Brown-Gentry K, Buxbaum SG, Sarpong DF, Taylor HA. 55.  et al. 2011. SCN5A variation is associated with electrocardiographic traits in the Jackson Heart Study. Circ. Cardiovasc. Genet. 4:139–44 [Google Scholar]
  56. Jouven X, Desnos M, Guerot C, Ducimetiere P. 56.  1999. Predicting sudden death in the population: the Paris Prospective Study I. Circulation 99:1978–83 [Google Scholar]
  57. Kaikkonen KS, Kortelainen ML, Linna E, Huikuri HV. 57.  2006. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation 114:1462–67 [Google Scholar]
  58. Kao WH, Arking DE, Post W, Rea TD, Sotoodehnia N. 58.  et al. 2009. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 119:940–51 [Google Scholar]
  59. Lehnart SE, Ackerman MJ, Benson DW Jr, Brugada R, Clancy CE. 59.  et al. 2007. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116:2325–45 [Google Scholar]
  60. Lehtinen AB, Newton-Cheh C, Ziegler JT, Langefeld CD, Freedman BI. 60.  et al. 2008. Association of NOS1AP genetic variants with QT interval duration in families from the Diabetes Heart Study. Diabetes 57:1108–14 [Google Scholar]
  61. Lin DY, Tang ZZ. 61.  2011. A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. 89:354–67 [Google Scholar]
  62. London B, Michalec M, Mehdi H, Zhu X, Kerchner L. 62.  et al. 2007. Mutation in glycerol-3-phosphate dehydrogenase 1–like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116:2260–68 [Google Scholar]
  63. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA. 63.  et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747–53 [Google Scholar]
  64. Mohamed U, Napolitano C, Priori SG. 64.  2007. Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J. Cardiovasc. Electrophysiol. 18:791–97 [Google Scholar]
  65. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X. 65.  et al. 2009. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41:399–406 [Google Scholar]
  66. Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG. 66.  et al. 2005. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: the Framingham Heart Study. Heart Rhythm 2:277–84 [Google Scholar]
  67. Nitsch D, Tranchevent LC, Thienpont B, Thorrez L, Van Esch H. 67.  et al. 2009. Network analysis of differential expression for the identification of disease-causing genes. PLoS ONE 4:e5526 [Google Scholar]
  68. Noseworthy PA, Havulinna AS, Porthan K, Lahtinen AM, Jula A. 68.  et al. 2011. Common genetic variants, QT interval, and sudden cardiac death in a Finnish population-based study. Circ. Cardiovasc. Genet. 4:305–11 [Google Scholar]
  69. Okin PM, Devereux RB, Howard BV, Fabsitz RR, Lee ET, Welty TK. 69.  2000. Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians: the Strong Heart Study. Circulation 101:61–66 [Google Scholar]
  70. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V. 70.  et al. 2009. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41:407–14 [Google Scholar]
  71. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG. 71.  et al. 2010. Genome-wide association study of PR interval. Nat. Genet. 42:153–59 [Google Scholar]
  72. Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T. 72.  et al. 2006. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J. Clin. Investig. 116:430–35 [Google Scholar]
  73. Post W, Shen H, Damcott C, Arking DE, Kao WH. 73.  et al. 2007. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum. Hered. 64:214–19 [Google Scholar]
  74. Priori SG, Napolitano C, Schwartz PJ. 74.  1999. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99:529–33 [Google Scholar]
  75. Raitakari OT, Blom-Nyholm J, Koskinen TA, Kahonen M, Viikari JS, Lehtimaki T. 75.  2008. Common variation in NOS1AP and KCNH2 genes and QT interval duration in young adults. The Cardiovascular Risk in Young Finns Study. Ann. Med. 41:1–8 [Google Scholar]
  76. Roden DM. 76.  2006. Long QT syndrome: reduced repolarization reserve and the genetic link. J. Intern. Med. 259:59–69 [Google Scholar]
  77. Ruan Y, Liu N, Priori SG. 77.  2009. Sodium channel mutations and arrhythmias. Nat. Rev. Cardiol. 6:337–48 [Google Scholar]
  78. Schouten EG, Dekker JM, Meppelink P, Kok FJ, Vandenbroucke JP, Pool J. 78.  1991. QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation 84:1516–23 [Google Scholar]
  79. Schwartz PJ, Priori SG, Napolitano C. 79.  2003. How really rare are rare diseases? The intriguing case of independent compound mutations in the long QT syndrome. J. Cardiovasc. Electrophysiol. 14:1120–21 [Google Scholar]
  80. Sharp DS, Masaki K, Burchfiel CM, Yano K, Schatz IJ. 80.  1998. Prolonged QTc interval, impaired pulmonary function, and a very lean body mass jointly predict all-cause mortality in elderly men. Ann. Epidemiol. 8:99–106 [Google Scholar]
  81. Siscovick DS, Raghunathan TE, Rautaharju P, Psaty BM, Cobb LA, Wagner EH. 81.  1996. Clinically silent electrocardiographic abnormalities and risk of primary cardiac arrest among hypertensive patients. Circulation 94:1329–33 [Google Scholar]
  82. Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C. 82.  et al. 2010. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat. Genet. 42:1068–76 [Google Scholar]
  83. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A. 83.  et al. 2002. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297:1333–36 [Google Scholar]
  84. Stecker EC, Sono M, Wallace E, Gunson K, Jui J, Chugh SS. 84.  2006. Allelic variants of SCN5A and risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm 3:697–700 [Google Scholar]
  85. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A. 85.  et al. 2006. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll. Cardiol. 47:362–67 [Google Scholar]
  86. Tobin MD, Kahonen M, Braund P, Nieminen T, Hajat C. 86.  et al. 2008. Gender and effects of a common genetic variant in the NOS1 regulator NOS1AP on cardiac repolarization in 3761 individuals from two independent populations. Int. J. Epidemiol. 37:1132–41 [Google Scholar]
  87. Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I. 87.  et al. 2010. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 55:2745–52 [Google Scholar]
  88. Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W. 88.  et al. 2009. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84:445–58 [Google Scholar]
  89. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. 89.  2004. Compound mutations: a common cause of severe long-QT syndrome. Circulation 109:1834–41 [Google Scholar]
  90. Zheng ZJ, Croft JB, Giles WH, Mensah GA. 90.  2001. Sudden cardiac death in the United States, 1989 to 1998. Circulation 104:2158–63 [Google Scholar]
/content/journals/10.1146/annurev-genom-090711-163841
Loading
/content/journals/10.1146/annurev-genom-090711-163841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error