1932

Abstract

Although the basic principles underlying the function of the peripheral auditory system have been known for many years, the molecules required for hearing have hitherto remained elusive. Genetic approaches have recently provided unparalleled molecular insight into how the hair bundle, the hair cell's mechanosensory organelle, forms and functions. We discuss how the proteins encoded by the Usher syndrome type 1 genes form molecular complexes required for hair-bundle development and for gating the mechanotransducer channel. We show how mouse models for nonsyndromic forms of deafness involving genes encoding Triobp and stereocilin reveal, respectively, the way stereocilia rootlets contribute to the hair bundle's mechanical properties and how the hair bundle produces suppressive masking, a property that contributes to speech intelligibility. Finally, we examine how mutations in the genes encoding α- and β-tectorin reveal multiple roles for the tectorial membrane, an extracellular matrix unique to the cochlea, in stimulating hair bundles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-012110-142228
2011-03-17
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/73/1/annurev-physiol-012110-142228.html?itemId=/content/journals/10.1146/annurev-physiol-012110-142228&mimeType=html&fmt=ahah

Literature Cited

  1. Bregman AS. 1.  1990. Auditory Scene Analysis: The Perceptual Organization of Sound Cambridge, MA: MIT Press
  2. Carroll SB. 2.  2003. Genetics and the making of Homo sapiens. Nature 422:849–57 [Google Scholar]
  3. Ohm GS. 3.  1843. Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Phys. Chem. 59:513–65 [Google Scholar]
  4. Gold T.4.  1948. Hearing. II. The physical basis of the action of the cochlea. Proc. R. Soc. Lond. Ser. B 135:492–98 [Google Scholar]
  5. von Helmholtz H. 5.  1862. Die Lehre von den Tonempfindungen: Als physiologische Grundlage für die Theorie der Musik (On the Sensations of Tone as a Physiological Basis for the Theory of Music) Braunschweig: F. Vieweg und Sohn [Google Scholar]
  6. Rayleigh LSJW. 6.  1907. On our perception of sound direction. Philos. Mag. 13:214–32 [Google Scholar]
  7. von Békésy G. 7.  1960. Experiments in Hearing New York: McGraw-Hill
  8. Chalfie M. 8.  2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10:44–52 [Google Scholar]
  9. Petit C. 9.  1996. Genes responsible for human hereditary deafness: symphony of a thousand. Nat. Genet. 14:385–91 [Google Scholar]
  10. Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A. 10.  et al. 2006. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38:770–78 [Google Scholar]
  11. Leibovici M, Safieddine S, Petit C. 11.  2008. Mouse models of human hereditary deafness. Curr. Top. Dev. Biol. 84:385–429 [Google Scholar]
  12. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN. 12.  et al. 1997. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83 [Google Scholar]
  13. Denoyelle F, Marlin S, Weil D, Moatti L, Chauvin P. 13.  et al. 1999. Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin26 gene defect: implications for genetic counselling. Lancet 353:1298–303 [Google Scholar]
  14. Hilgert N, Smith RJ, Van Camp G. 14.  2009. Function and expression pattern of nonsyndromic deafness genes. Curr. Mol. Med. 9:546–64 [Google Scholar]
  15. Cohen-Salmon M, Ott T, Michel V, Hardelin J-P, Perfettini I. 15.  et al. 2002. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 12:1106–11 [Google Scholar]
  16. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. 16.  2003. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J. Comp. Neurol. 467:207–31 [Google Scholar]
  17. Flock A, Bretscher A, Weber K. 17.  1982. Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hear. Res. 7:75–89 [Google Scholar]
  18. Flock A, Duvall A Jr. 18.  1965. The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J. Cell Biol. 25:1–8 [Google Scholar]
  19. Furness DN, Hackney CM. 19.  2006. The structure and composition of the stereociliary bundle of vertebrate hair cells. Vertebrate Hair Cells RA Eatock, RR Fay, AN Popper 95–153 New York: Springer [Google Scholar]
  20. Bagger-Sjoback D, Wersall J. 20.  1973. The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J. Neurocytol. 2:329–50 [Google Scholar]
  21. Hirokawa N, Tilney LG. 21.  1982. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J. Cell Biol. 95:249–61 [Google Scholar]
  22. Neugebauer DC, Thurm U. 22.  1984. Chemical dissection of stereovilli from fish inner ear reveals differences from intestinal microvilli. J. Neurocytol. 13:797–808 [Google Scholar]
  23. Pickles JO, Comis SD, Osborne MP. 23.  1984. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res. 15:103–12 [Google Scholar]
  24. Furness DN, Hackney CM. 24.  1985. Cross-links between stereocilia in the guinea pig cochlea. Hear. Res. 18:177–88 [Google Scholar]
  25. Csukas SR, Rosenquist TH, Mulroy MJ. 25.  1987. Connections between stereocilia in auditory hair cells of the alligator lizard. Hear. Res. 30:147–55 [Google Scholar]
  26. Goodyear R, Richardson G. 26.  1992. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J. Comp. Neurol. 325:243–56 [Google Scholar]
  27. Jacobs RA, Hudspeth AJ. 27.  1990. Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog's internal ear. Cold Spring Harb. Symp. Quant. Biol. 55:547–61 [Google Scholar]
  28. Tsuprun V, Santi P. 28.  1998. Structure of outer hair cell stereocilia links in the chinchilla. J. Neurocytol. 27:517–28 [Google Scholar]
  29. Hillman DE.29.  1969. New ultrastructural findings regarding a vestibular ciliary apparatus and its possible functional significance. Brain Res. 13:407–12 [Google Scholar]
  30. Hillman DE, Lewis ER. 30.  1971. Morphological basis for a mechanical linkage in otolithic receptor transduction in the frog. Science 174:416–19 [Google Scholar]
  31. Ernston S, Smith CA. 31.  1986. Stereo-kinociliar bonds in mammalian vestibular organs. Acta Otolaryngol. 101:395–402 [Google Scholar]
  32. Goodyear RJ, Richardson GP. 32.  2003. A novel antigen sensitive to calcium chelation that is associated with the tip links and kinocilial links of sensory hair bundles. J. Neurosci. 23:4878–87 [Google Scholar]
  33. Goodyear RJ, Marcotti W, Kros CJ, Richardson GP. 33.  2005. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J. Comp. Neurol. 485:75–85 [Google Scholar]
  34. Michel V, Goodyear RJ, Weil D, Marcotti W, Perfettini I. 34.  et al. 2005. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev. Biol. 280:281–94 [Google Scholar]
  35. Petit C, Richardson GP. 35.  2009. Linking genes underlying deafness to hair-bundle development and function. Nat. Neurosci. 12:703–10 [Google Scholar]
  36. Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT. 36.  et al. 2002. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat. Neurosci. 5:41–47 [Google Scholar]
  37. Waguespack J, Salles FT, Kachar B, Ricci AJ. 37.  2007. Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J. Neurosci. 27:13890–902 [Google Scholar]
  38. Lelli A, Asai Y, Forge A, Holt JR, Geleoc GS. 38.  2009. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J. Neurophysiol. 101:2961–73 [Google Scholar]
  39. Michalski N, Michel V, Caberlotto E, Lefèvre GM, van Aken AFJ. 39.  et al. 2009. Harmonin-B, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells. Pflüg. Arch. 459:115–30 [Google Scholar]
  40. Fettiplace R, Hackney CM. 40.  2006. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7:19–29 [Google Scholar]
  41. Gillespie PG, Muller U. 41.  2009. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44 [Google Scholar]
  42. Howard J, Hudspeth AJ. 42.  1987. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl. Acad. Sci. USA 84:3064–68 [Google Scholar]
  43. Markin VS, Hudspeth AJ. 43.  1995. Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu. Rev. Biophys. Biomol. Struct. 24:59–83 [Google Scholar]
  44. Howard J, Hudspeth AJ. 44.  1988. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1:189–99 [Google Scholar]
  45. Assad JA, Shepherd GM, Corey DP. 45.  1991. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–94 [Google Scholar]
  46. Beurg M, Evans MG, Hackney CM, Fettiplace R. 46.  2006. A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J. Neurosci. 26:10992–1000 [Google Scholar]
  47. Ricci AJ, Fettiplace R. 47.  1998. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J. Physiol. 506:Pt. 1159–73 [Google Scholar]
  48. Farris HE, LeBlanc CL, Goswami J, Ricci AJ. 48.  2004. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J. Physiol. 558:769–92 [Google Scholar]
  49. Beurg M, Fettiplace R, Nam JH, Ricci AJ. 49.  2009. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat. Neurosci. 12:553–58 [Google Scholar]
  50. Hudspeth AJ.50.  1992. Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. Soc. Gen. Physiol. Ser. 47:357–70 [Google Scholar]
  51. Jaramillo F, Hudspeth AJ. 51.  1993. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc. Natl. Acad. Sci. USA 90:1330–34 [Google Scholar]
  52. Gillespie PG, Cyr JL. 52.  2004. Myosin-1c, the hair cell's adaptation motor. Annu. Rev. Physiol. 66:521–45 [Google Scholar]
  53. Martin P, Hudspeth AJ. 53.  2001. Compressive nonlinearity in the hair bundle's active response to mechanical stimulation. Proc. Natl. Acad. Sci. USA 98:14386–91 [Google Scholar]
  54. Martin P, Bozovic D, Choe Y, Hudspeth AJ. 54.  2003. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J. Neurosci. 23:4533–48 [Google Scholar]
  55. Dallos P.55.  2008. Cochlear amplification, outer hair cells and prestin. Curr. Opin. Neurobiol. 18:370–76 [Google Scholar]
  56. Fettiplace R.56.  2006. Active hair bundle movements in auditory hair cells. J. Physiol. 576:29–36 [Google Scholar]
  57. Hudspeth AJ.57.  2008. Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–45 [Google Scholar]
  58. Ashmore J, Avan P, Brownell WE, Dallos P, Dierkes K. 58.  et al. 2010. The remarkable cochlear amplifier. Hear. Res. 266:1–17 [Google Scholar]
  59. Küssel-Andermann P, El-Amraoui A, Safieddine S, Hardelin J-P, Nouaille S. 59.  et al. 2000. Unconventional myosin VIIA is a novel A-kinase anchoring protein. J. Biol. Chem. 275:29654–59 [Google Scholar]
  60. Küssel-Andermann P, El-Amraoui A, Safieddine S, Nouaille S, Perfettini I. 60.  et al. 2000. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19:6020–29 [Google Scholar]
  61. Xu Z, Peng AW, Oshima K, Heller S. 61.  2008. MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J. Neurosci. 28:11269–76 [Google Scholar]
  62. Richardson GP, Bartolami S, Russell IJ. 62.  1990. Identification of a 275-kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J. Cell Biol. 110:1055–66 [Google Scholar]
  63. Goodyear RJ, Legan PK, Wright MB, Marcotti W, Oganesian A. 63.  et al. 2003. A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J. Neurosci. 23:9208–19 [Google Scholar]
  64. Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK. 64.  et al. 2006. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J. Neurosci. 26:7022–34 [Google Scholar]
  65. Goodyear R, Richardson G. 65.  1999. The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J. Neurosci. 19:3761–72 [Google Scholar]
  66. McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR. 66.  et al. 2006. The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J. Neurosci. 26:6543–53 [Google Scholar]
  67. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG. 67.  2001. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci. 21:5066–78 [Google Scholar]
  68. Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ. 68.  2002. Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. J. Assoc. Res. Otolaryngol. 3:488–98 [Google Scholar]
  69. Hackney CM, Mahendrasingam S, Jones EM, Fettiplace R. 69.  2003. The distribution of calcium buffering proteins in the turtle cochlea. J. Neurosci. 23:4577–89 [Google Scholar]
  70. Shin JB, Streijger F, Beynon A, Peters T, Gadzala L. 70.  et al. 2007. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53:371–86 [Google Scholar]
  71. Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K. 71.  et al. 2001. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat. Genet. 27:108–12 [Google Scholar]
  72. Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM. 72.  et al. 2001. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am. J. Hum. Genet. 68:26–37 [Google Scholar]
  73. Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R. 73.  et al. 2001. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat. Genet. 27:103–7 [Google Scholar]
  74. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S. 74.  et al. 2001. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet. 69:25–34 [Google Scholar]
  75. Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP. 75.  2001. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat. Genet. 27:99–102 [Google Scholar]
  76. Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S. 76.  et al. 2001. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet. 10:1709–18 [Google Scholar]
  77. Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV. 77.  et al. 2000. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat. Genet. 26:56–60 [Google Scholar]
  78. Verpy E, Leibovici M, Zwaenepoel I, Liu X-Z, Gal A. 78.  et al. 2000. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat. Genet. 26:51–55 [Google Scholar]
  79. Johnson KR, Gagnon LH, Webb LS, Peters LL, Hawes NL. 79.  et al. 2003. Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum. Mol. Genet. 12:3075–86 [Google Scholar]
  80. Kikkawa Y, Shitara H, Wakana S, Kohara Y, Takada T. 80.  et al. 2003. Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum. Mol. Genet. 12:453–61 [Google Scholar]
  81. Weil D, El-Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y. 81.  et al. 2003. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet. 12:463–71 [Google Scholar]
  82. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F. 82.  et al. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61 [Google Scholar]
  83. Gibson F, Walsh J, Mburu P, Varela A, Brown KA. 83.  et al. 1995. A type VII myosin encoded by the mouse deafness gene Shaker-1. Nature 374:62–64 [Google Scholar]
  84. Boëda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L. 84.  et al. 2002. Myosin VIIa, harmonin, and cadherin 23, three Usher I gene products, cooperate to shape the sensory hair cell bundle. EMBO J. 21:6689–99 [Google Scholar]
  85. Lagziel A, Ahmed ZM, Schultz JM, Morell RJ, Belyantseva IA, Friedman TB. 85.  2005. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev. Biol. 280:295–306 [Google Scholar]
  86. Petit C.86.  2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2:271–97 [Google Scholar]
  87. Lefèvre G, Michel V, Weil D, Lepelletier L, Bizard E. 87.  et al. 2008. A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135:1427–37 [Google Scholar]
  88. Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U. 88.  2002. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc. Natl. Acad. Sci. USA 99:14946–51 [Google Scholar]
  89. Adato A, Kikkawa Y, Reiners J, Alagramam KN, Weil D. 89.  et al. 2005. Interactions in the network of Usher syndrome type 1 proteins. Hum. Mol. Genet. 14:347–56 [Google Scholar]
  90. El-Amraoui A, Petit C. 90.  2005. Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118:4593–603 [Google Scholar]
  91. Senften M, Schwander M, Kazmierczak P, Lillo C, Shin JB. 91.  et al. 2006. Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J. Neurosci. 26:2060–71 [Google Scholar]
  92. Pan L, Yan J, Wu L, Zhang M. 92.  2009. Assembling stable hair cell tip link complex via multidentate interactions between harmonin and cadherin 23. Proc. Natl. Acad. Sci. USA 106:5575–80 [Google Scholar]
  93. Bahloul A, Michel V, Hardelin J-P, Nouaille S, Hoos S. 93.  et al. 2010. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum. Mol. Genet. 19:3557–65 [Google Scholar]
  94. Yan J, Pan L, Chen X, Wu L, Zhang M. 94.  2010. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc. Natl. Acad. Sci. USA 107:4040–45 [Google Scholar]
  95. Watanabe S, Ikebe R, Ikebe M. 95.  2006. Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J. Biol. Chem. 281:7151–60 [Google Scholar]
  96. Pawlowski KS, Kikkawa YS, Wright CG, Alagramam KN. 96.  2006. Progression of inner ear pathology in Ames waltzer mice and the role of protocadherin 15 in hair cell development. J. Assoc. Res. Otolaryngol. 7:83–94 [Google Scholar]
  97. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA. 97.  et al. 2007. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91 [Google Scholar]
  98. Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS. 98.  et al. 2004. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–55 [Google Scholar]
  99. Sollner C, Rauch GJ, Siemens J, Geisler R, Schuster SC. 99.  et al. 2004. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–59 [Google Scholar]
  100. Shapiro L, Weis WI. 100.  2009. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 1:a003053 [Google Scholar]
  101. Zhang Y, Sivasankar S, Nelson WJ, Chu S. 101.  2009. Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc. Natl. Acad. Sci. USA 106:109–14 [Google Scholar]
  102. Sotomayor M, Weihofen WA, Gaudet R, Corey DP. 102.  2010. Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66:85–100 [Google Scholar]
  103. Elledge HM, Kazmierczak P, Clark P, Joseph JS, Kolatkar A. 103.  et al. 2010. Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc. Natl. Acad. Sci. USA 107:10708–12 [Google Scholar]
  104. Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG. 104.  2000. High-resolution structure of hair-cell tip links. Proc. Natl. Acad. Sci. USA 97:13336–41 [Google Scholar]
  105. Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM. 105.  et al. 2009. A mouse model for nonsyndromic deafness (DFNB12) links hearing loss to defects in tip links of mechanosensory hair cells. Proc. Natl. Acad. Sci. USA 106:5252–57 [Google Scholar]
  106. Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T. 106.  et al. 2009. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62:375–87 [Google Scholar]
  107. Hudspeth AJ, Gillespie PG. 107.  1994. Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9 [Google Scholar]
  108. Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM. 108.  et al. 2002. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–81 [Google Scholar]
  109. Wu YC, Ricci AJ, Fettiplace R. 109.  1999. Two components of transducer adaptation in auditory hair cells. J. Neurophysiol. 82:2171–81 [Google Scholar]
  110. Tilney LG, Derosier DJ, Mulroy MJ. 110.  1980. The organization of actin filaments in the stereocilia of cochlear hair cells. J. Cell Biol. 86:244–59 [Google Scholar]
  111. Furness DN, Mahendrasingam S, Ohashi M, Fettiplace R, Hackney CM. 111.  2008. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J. Neurosci. 28:6342–53 [Google Scholar]
  112. Crawford AC, Fettiplace R. 112.  1985. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. 364:359–79 [Google Scholar]
  113. Karavitaki KD, Corey DP. 113.  2010. Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels. J. Neurosci. 30:9051–63 [Google Scholar]
  114. Howard J, Ashmore JF. 114.  1986. Stiffness of sensory hair bundles in the sacculus of the frog. Hear. Res. 23:93–104 [Google Scholar]
  115. Martin P, Mehta AD, Hudspeth AJ. 115.  2000. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. USA 97:12026–31 [Google Scholar]
  116. Howard J, Roberts WM, Hudspeth AJ. 116.  1988. Mechanoelectrical transduction by hair cells. Annu. Rev. Biophys. Biophys. Chem. 17:99–124 [Google Scholar]
  117. Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR. 117.  2000. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102:377–85 [Google Scholar]
  118. Riazuddin S, Khan SN, Ahmed ZM, Ghosh M, Caution K. 118.  et al. 2006. Mutations in TRIOBP, which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness. Am. J. Hum. Genet. 78:137–43 [Google Scholar]
  119. Shahin H, Walsh T, Sobe T, Abu Sa'ed J, Abu Rayan A. 119.  et al. 2006. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am. J. Hum. Genet. 78:144–52 [Google Scholar]
  120. Kitajiri S, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R. 120.  et al. 2010. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141:786–98 [Google Scholar]
  121. Etournay R, Lepelletier L, Boutet de Monvel J, Michel V, Cayet N. 121.  et al. 2010. Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape. Development 137:1373–83 [Google Scholar]
  122. Belyantseva IA, Frolenkov GI, Wade JB, Mammano F, Kachar B. 122.  2000. Water permeability of cochlear outer hair cells: characterization and relationship to electromotility. J. Neurosci. 20:8996–9003 [Google Scholar]
  123. Verpy E, Masmoudi S, Zwaenepoel I, Leibovici M, Hutchin TP. 123.  et al. 2001. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat. Genet. 29:345–49 [Google Scholar]
  124. Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G. 124.  et al. 2008. Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456:255–58 [Google Scholar]
  125. Kozlov AS, Risler T, Hudspeth AJ. 125.  2007. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels. Nat. Neurosci. 10:87–92 [Google Scholar]
  126. Davis H.126.  1965. A model for transducer action in the cochlea. Cold Spring Harb. Symp. Quant. Biol. 30:181–90 [Google Scholar]
  127. Neely ST, Kim DO. 127.  1986. A model for active elements in cochlear biomechanics. J. Acoust. Soc. Am. 79:1472–80 [Google Scholar]
  128. Mammano F, Nobili R. 128.  1993. Biophysics of the cochlea: linear approximation. J. Acoust. Soc. Am. 93:3320–32 [Google Scholar]
  129. Abnet CC, Freeman DM. 129.  2000. Deformations of the isolated mouse tectorial membrane produced by oscillatory forces. Hear. Res. 144:29–46 [Google Scholar]
  130. Legan PK, Rau A, Keen JN, Richardson GP. 130.  1997. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem. 272:8791–801 [Google Scholar]
  131. Alasti F, Sanati MH, Behrouzifard AH, Sadeghi A, de Brouwer AP. 131.  et al. 2008. A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. Int. J. Pediatr. Otorhinolaryngol. 72:249–55 [Google Scholar]
  132. Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP. 132.  2000. A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–85 [Google Scholar]
  133. Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K. 133.  et al. 2005. A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat. Neurosci. 8:1035–42 [Google Scholar]
  134. Xia A, Gao SS, Yuan T, Osborn A, Bress A. 134.  et al. 2010. Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation. Dis. Model. Mech. 3:209–23 [Google Scholar]
  135. Gummer AW, Hemmert W, Zenner HP. 135.  1996. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Proc. Natl. Acad. Sci. USA 93:8727–32 [Google Scholar]
  136. Mellado Lagarde MM, Drexl M, Lukashkina VA, Lukashkin AN, Russell IJ. 136.  2008. Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier. Nat. Neurosci. 11:746–48 [Google Scholar]
  137. Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC. 137.  et al. 1998. Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat. Genet. 19:60–62 [Google Scholar]
  138. Nowotny M, Gummer AW. 138.  2006. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc. Natl. Acad. Sci. USA 103:2120–25 [Google Scholar]
  139. Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP. 139.  2007. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat. Neurosci. 10:215–23 [Google Scholar]
  140. Hasko JA, Richardson GP. 140.  1988. The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear. Res. 35:21–38 [Google Scholar]
  141. Ghaffari R, Aranyosi AJ, Freeman DM. 141.  2007. Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc. Natl. Acad. Sci. USA 104:16510–15 [Google Scholar]
  142. Basbaum AI, Bautista DM, Scherrer G, Julius D. 142.  2009. Cellular and molecular mechanisms of pain. Cell 139:267–84 [Google Scholar]
/content/journals/10.1146/annurev-physiol-012110-142228
Loading
/content/journals/10.1146/annurev-physiol-012110-142228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error