1932

Abstract

Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but many neurons release multiple transmitters. Although the physiological role for corelease has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H+ electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Corelease thus serves multiple roles in synaptic transmission.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020911-153315
2012-03-17
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/74/1/annurev-physiol-020911-153315.html?itemId=/content/journals/10.1146/annurev-physiol-020911-153315&mimeType=html&fmt=ahah

Literature Cited

  1. Edwards RH.1.  2007. The neurotransmitter cycle and quantal size. Neuron 55:835–58 [Google Scholar]
  2. Gronborg M, Pavlos NJ, Brunk I, Chua JJ, Munster-Wandowski A. 2.  et al. 2010. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J. Neurosci. 30:2–12 [Google Scholar]
  3. Whittaker VP, Dowdall MJ, Boyne AF. 3.  1972. The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non-mammalian preparations. Biochem. Soc. Symp. 1972:49–68 [Google Scholar]
  4. Silinsky EM.4.  1975. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. 247:145–62 [Google Scholar]
  5. Burnstock G.5.  2004. Cotransmission. Curr. Opin. Pharmacol. 4:47–52 [Google Scholar]
  6. Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C. 6.  et al. 2006. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50:575–87 [Google Scholar]
  7. Awatramani GB, Turecek R, Trussell LO. 7.  2005. Staggered development of GABAergic and glycinergic transmission in the MNTB. J. Neurophysiol. 93:819–28 [Google Scholar]
  8. Jonas P, Bischofberger J, Sandkuhler J. 8.  1998. Corelease of two fast neurotransmitters at a central synapse. Science 281:419–24 [Google Scholar]
  9. Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A. 9.  et al. 2004. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat. Neurosci. 7:17–23 [Google Scholar]
  10. Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA. 10.  2005. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 46:65–74 [Google Scholar]
  11. Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C. 11.  et al. 1996. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–35 [Google Scholar]
  12. Johnson MD.12.  1994. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–42 [Google Scholar]
  13. Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN. 13.  et al. 1998. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18:4588–602 [Google Scholar]
  14. Maher BJ, Westbrook GL. 14.  2008. Co-transmission of dopamine and GABA in periglomerular cells. J. Neurophysiol. 99:1559–64 [Google Scholar]
  15. Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O. 15.  2005. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl. Acad. Sci. USA 102:5245–49 [Google Scholar]
  16. Forgac M.16.  2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:917–29 [Google Scholar]
  17. Johnson RG, Carty SE, Scarpa A. 17.  1981. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts. J. Biol. Chem. 256:5773–80 [Google Scholar]
  18. Knoth J, Zallakian M, Njus D. 18.  1981. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry 20:6625–29 [Google Scholar]
  19. Nguyen ML, Cox GD, Parsons SM. 19.  1998. Kinetic parameters for the vesicular acetylcholine transporter: Two protons are exchanged for one acetylcholine. Biochemistry 37:13400–10 [Google Scholar]
  20. Hell JW, Maycox PR, Jahn R. 20.  1990. Energy dependence and functional reconstitution of the γ-aminobutyric acid carrier from synaptic vesicles. J. Biol. Chem. 265:2111–17 [Google Scholar]
  21. Kish PE, Fischer-Bovenkerk C, Ueda T. 21.  1989. Active transport of γ-aminobutyric acid and glycine into synaptic vesicles. Proc. Natl. Acad. Sci. USA 86:3877–81 [Google Scholar]
  22. Juge N, Muroyama A, Hiasa M, Omote H, Moriyama Y. 22.  2009. Vesicular inhibitory amino acid transporter is a Cl/γ-aminobutyrate co-transporter. J. Biol. Chem. 284:35073–78 [Google Scholar]
  23. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH. 23.  2004. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27:98–103 [Google Scholar]
  24. Takamori S.24.  2006. VGLUTs: “exciting” times for glutamatergic research?. Neurosci. Res. 55:343–51 [Google Scholar]
  25. El Mestikawy S, Wallen-Mackenzie A, Fortin GM, Descarries L, Trudeau LE. 25.  2011. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat. Rev. Neurosci. 12:204–16 [Google Scholar]
  26. Maycox PR, Deckwerth T, Hell JW, Jahn R. 26.  1988. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263:15423–28 [Google Scholar]
  27. Tabb JS, Kish PE, Van Dyke R, Ueda T. 27.  1992. Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J. Biol. Chem. 267:15412–18 [Google Scholar]
  28. Tan PK, Waites C, Liu Y, Krantz DE, Edwards RH. 28.  1998. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters. J. Biol. Chem. 273:17351–60 [Google Scholar]
  29. Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D. 29.  et al. 2010. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–56Using conditional knockout mice lacking VGLUT2 specifically in dopamine neurons, this paper demonstrates the costorage and corelease of glutamate by VTA dopamine neurons. It also elucidates the nonredundant roles of glutamate and Cl in formation and stabilization of ΔpH. [Google Scholar]
  30. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M. 30.  et al. 2001. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–96 [Google Scholar]
  31. Accardi A, Miller C. 31.  2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–7 [Google Scholar]
  32. Graves AR, Curran PK, Smith CL, Mindell JA. 32.  2008. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–92 [Google Scholar]
  33. Picollo A, Pusch M. 33.  2005. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–23 [Google Scholar]
  34. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ. 34.  2005. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–27 [Google Scholar]
  35. Neagoe I, Stauber T, Fidzinski P, Bergsdorf EY, Jentsch TJ. 35.  2010. The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. J. Biol. Chem. 285:21689–97 [Google Scholar]
  36. Novarino G, Weinert S, Rickheit G, Jentsch TJ. 36.  2010. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–401 [Google Scholar]
  37. Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N. 37.  et al. 2010. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl accumulation. Science 328:1401–3 [Google Scholar]
  38. Johnson RG, Carty SE, Scarpa A. 38.  1985. Coupling of H+ gradients to catecholamine transport in chromaffin granules. Ann. N. Y. Acad. Sci. 456:254–67 [Google Scholar]
  39. Johnson RG, Scarpa A. 39.  1979. Protonmotive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254:3750–60 [Google Scholar]
  40. Riazanski V, Deriy LV, Shevchenko PD, Le B, Gomez EA, Nelson DJ. 40.  2011. Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat. Neurosci. 14:487–94 [Google Scholar]
  41. Schenck S, Wojcik SM, Brose N, Takamori S. 41.  2009. A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat. Neurosci. 12:156–62Uses purified, reconstituted VGLUT1 and vesicle acidification to suggest that Cl efflux promotes vesicular glutamate uptake. [Google Scholar]
  42. Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G. 42.  et al. 1996. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc. Natl. Acad. Sci. USA 93:5347–51 [Google Scholar]
  43. Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH. 43.  2000. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–60 [Google Scholar]
  44. Wolosker H, de Souza DO, de Meis L. 44.  1996. Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J. Biol. Chem. 271:11726–31 [Google Scholar]
  45. Juge N, Gray JA, Omote H, Miyaji T, Inoue T. 45.  et al. 2010. Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112Along with showing that ketone bodies influence vesicular glutamate transport by competing with Cl at an allosteric site, this work could not detect a VGLUT-mediated Cl conductance by directly measuring Cl flux. [Google Scholar]
  46. Bankston LA, Guidotti G. 46.  1996. Characterization of ATP transport into chromaffin granule ghosts. Synergy of ATP and serotonin accumulation in chromaffin granule ghosts. J. Biol. Chem. 271:17132–38 [Google Scholar]
  47. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M. 47.  et al. 2008. Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. USA 105:5683–86 [Google Scholar]
  48. Takamori S, Rhee JS, Rosenmund C, Jahn R. 48.  2000. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–94 [Google Scholar]
  49. Erickson JD, Masserano JM, Barnes EM, Ruth JA, Weiner N. 49.  1990. Chloride ion increases [3H]dopamine accumulation by synaptic vesicles purified from rat striatum: inhibition by thiocyanate ion. Brain Res. 516:155–60 [Google Scholar]
  50. Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D. 50.  et al. 2010. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 30:2198–210 [Google Scholar]
  51. Zander JF, Munster-Wandowski A, Brunk I, Pahner I, Gomez-Lira G. 51.  et al. 2010. Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J. Neurosci. 30:7634–45 [Google Scholar]
  52. Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J. 52.  et al. 2008. The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat. Neurosci. 11:292–300Focusing on cholinergic interneurons of the striatum, this paper demonstrates an important role for glutamate entry through VGLUT3 on synaptic vesicle filling with ACh. [Google Scholar]
  53. Kawano M, Kawasaki A, Sakata-Haga H, Fukui Y, Kawano H. 53.  et al. 2006. Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J. Comp. Neurol. 498:581–92 [Google Scholar]
  54. Yamaguchi T, Wang HL, Li X, Ng TH, Morales M. 54.  2011. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 31:8476–90 [Google Scholar]
  55. Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J. 55.  et al. 2002. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. USA 99:14488–93 [Google Scholar]
  56. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P. 56.  et al. 2002. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22:5442–51 [Google Scholar]
  57. Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD. 57.  2002. Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J. Biol. Chem. 277:50734–48 [Google Scholar]
  58. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. 58.  2008. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152:1024–31 [Google Scholar]
  59. Yamaguchi T, Sheen W, Morales M. 59.  2007. Glutamatergic neurons are present in the rat ventral tegmental area. Eur. J. Neurosci. 25:106–18 [Google Scholar]
  60. Berube-Carriere N, Riad M, Dal Bo G, Levesque D, Trudeau LE, Descarries L. 60.  2009. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J. Comp. Neurol. 517:873–91 [Google Scholar]
  61. Dal Bo G, Berube-Carriere N, Mendez JA, Leo D, Riad M. 61.  et al. 2008. Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience 156:59–70 [Google Scholar]
  62. Descarries L, Berube-Carriere N, Riad M, Dal Bo G, Mendez JA, Trudeau LE. 62.  2008. Glutamate in dopamine neurons: synaptic versus diffuse transmission. Brain Res. Rev. 58:290–302 [Google Scholar]
  63. Mendez JA, Bourque MJ, Dal Bo G, Bourdeau ML, Danik M. 63.  et al. 2008. Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J. Neurosci. 28:6309–18 [Google Scholar]
  64. Birgner C, Nordenankar K, Lundblad M, Mendez JA, Smith C. 64.  et al. 2010. VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc. Natl. Acad. Sci. USA 107:389–94 [Google Scholar]
  65. Hattori T, Takada M, Moriizumi T, Van der Kooy D. 65.  1991. Single dopaminergic nigrostriatal neurons form two chemically distinct synaptic types: possible transmitter segregation within neurons. J. Comp. Neurol. 309:391–401 [Google Scholar]
  66. Meredith GE, Wouterlood FG. 66.  1993. Identification of synaptic interactions of intracellularly injected neurons in fixed brain slices by means of dual-label electron microscopy. Microsc. Res. Tech. 24:31–42 [Google Scholar]
  67. Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE. 67.  2004. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J. Neurochem. 88:1398–405 [Google Scholar]
  68. Moss J, Ungless MA, Bolam JP. 68.  2011. Dopaminergic axons in different divisions of the adult rat striatal complex do not express vesicular glutamate transporters. Eur. J. Neurosci. 33:1205–11 [Google Scholar]
  69. Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T. 69.  et al. 2010. A cation counterflux supports lysosomal acidification. J. Cell Biol. 189:1171–86 [Google Scholar]
  70. Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R. 70.  et al. 2004. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc. Natl. Acad. Sci. USA 101:7158–63 [Google Scholar]
  71. Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H. 71.  et al. 2005. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J. Neurosci. 25:6221–34 [Google Scholar]
  72. De Gois S, Jeanclos E, Morris M, Grewal S, Varoqui H, Erickson JD. 72.  2006. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell Mol. Neurobiol. 26:679–93 [Google Scholar]
  73. Orlowski J, Grinstein S. 73.  2004. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflüg. Arch. 447:549–65 [Google Scholar]
  74. Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. 74.  2005. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280:1561–72 [Google Scholar]
  75. Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M. 75.  et al. 2008. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am. J. Hum. Genet. 82:1003–10 [Google Scholar]
  76. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y. 76.  et al. 2008. Identifying autism loci and genes by tracing recent shared ancestry. Science 321:218–23 [Google Scholar]
  77. Brauchi S, Krapivinsky G, Krapivinsky L, Clapham DE. 77.  2008. TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc. Natl. Acad. Sci. USA 105:8304–8 [Google Scholar]
  78. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. 78.  2006. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52:485–96 [Google Scholar]
  79. Demb JB.79.  2007. Cellular mechanisms for direction selectivity in the retina. Neuron 55:179–86 [Google Scholar]
  80. Lee S, Kim K, Zhou ZJ. 80.  2010. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:1159–72Elegantly shows that starburst amacrine cells of the retina release GABA and ACh from distinct vesicle pools and that the differential release contributes to direction selectivity in retinal ganglion cells. [Google Scholar]
  81. Gillespie DC, Kim G, Kandler K. 81.  2005. Inhibitory synapses in the developing auditory system are glutamatergic. Nat. Neurosci. 8:332–38 [Google Scholar]
  82. Noh J, Seal RP, Garver JA, Edwards RH, Kandler K. 82.  2010. Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nat. Neurosci. 13:232–38Demonstrates a developmental role for VGLUT3 in the corelease of glutamate by inhibitory MNTB neurons and its importance for synaptic refinement within the lateral superior olive that contributes to sound localization. [Google Scholar]
  83. Gutierrez R, Romo-Parra H, Maqueda J, Vivar C, Ramirez M. 83.  et al. 2003. Plasticity of the GABAergic phenotype of the “glutamatergic” granule cells of the rat dentate gyrus. J. Neurosci. 23:5594–98 [Google Scholar]
  84. Maqueda J, Ramirez M, Lamas M, Gutierrez R. 84.  2003. Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neurosci. Lett. 353:69–71 [Google Scholar]
  85. Walker MC, Ruiz A, Kullmann DM. 85.  2001. Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29:703–15 [Google Scholar]
  86. Trudeau LE, Gutierrez R. 86.  2007. On cotransmission & neurotransmitter phenotype plasticity. Mol. Interv. 7:138–46 [Google Scholar]
  87. Gutierrez R.87.  2000. Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. J. Neurophysiol. 84:3088–90 [Google Scholar]
  88. Lehmann H, Ebert U, Loscher W. 88.  1996. Immunocytochemical localization of GABA immunoreactivity in dentate granule cells of normal and kindled rats. Neurosci. Lett. 212:41–44 [Google Scholar]
  89. Nadler JV.89.  2003. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28:1649–58 [Google Scholar]
  90. Romo-Parra H, Vivar C, Maqueda J, Morales MA, Gutierrez R. 90.  2003. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. J. Neurophysiol. 89:3155–67 [Google Scholar]
  91. Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D. 91.  et al. 2004. Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J. Neurosci. 24:972–81 [Google Scholar]
  92. Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK. 92.  2005. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25:5013–23 [Google Scholar]
  93. Gorelova N, Mulholland PJ, Chandler LJ, Seamans JK. 93.  2011. The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb. Cortex. In press
  94. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A. 94.  2010. Dopaminergic terminals in the nucleus accumbens but not in the dorsal striatum corelease glutamate. J. Neurosci. 30:8229–33 [Google Scholar]
  95. Tecuapetla F, Patel JC, Xenias H, English D, Tadros I. 95.  et al. 2010. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci. 30:7105–10Along with Reference 94, this work uses optogenetics to show that glutamate released by dopamine neurons activates ionotropic glutamate receptors on postsynaptic medium spiny neurons in the nucleus accumbens of adult mice. [Google Scholar]
  96. Hollerman JR, Schultz W. 96.  1998. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1:304–9 [Google Scholar]
  97. Schultz W.97.  2002. Getting formal with dopamine and reward. Neuron 36:241–63 [Google Scholar]
  98. Schultz W, Dayan P, Montague PR. 98.  1997. A neural substrate of prediction and reward. Science 275:1593–99 [Google Scholar]
  99. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. 99.  2003. Subsecond dopamine release promotes cocaine seeking. Nature 422:614–18 [Google Scholar]
  100. Lapish CC, Kroener S, Durstewitz D, Lavin A, Seamans JK. 100.  2007. The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology 191:609–25 [Google Scholar]
  101. Lapish CC, Seamans JK, Judson Chandler L. 101.  2006. Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol. Clin. Exp. Res. 30:1451–65 [Google Scholar]
  102. Hnasko TS, Sotak BN, Palmiter RD. 102.  2005. Morphine reward in dopamine-deficient mice. Nature 438:854–57 [Google Scholar]
  103. Hnasko TS, Sotak BN, Palmiter RD. 103.  2007. Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J. Neurosci. 27:12484–88 [Google Scholar]
  104. Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G. 104.  et al. 2009. Fast synaptic subcortical control of hippocampal circuits. Science 326:449–53Uses channelrhodopsin to demonstrate the release of glutamate from hippocampal projections of serotonergic raphe nuclei. [Google Scholar]
  105. Hioki H, Fujiyama F, Nakamura K, Wu SX, Matsuda W, Kaneko T. 105.  2004. Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Cereb. Cortex 14:1266–75 [Google Scholar]
  106. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T. 106.  et al. 2010. Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J. Comp. Neurol. 518:668–86 [Google Scholar]
  107. Jackson J, Bland BH, Antle MC. 107.  2009. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 63:31–41 [Google Scholar]
  108. Mintz EM, Scott TJ. 108.  2006. Colocalization of serotonin and vesicular glutamate transporter 3-like immunoreactivity in the midbrain raphe of Syrian hamsters (Mesocricetus auratus). Neurosci. Lett. 394:97–100 [Google Scholar]
  109. Shutoh F, Ina A, Yoshida S, Konno J, Hisano S. 109.  2008. Two distinct subtypes of serotonergic fibers classified by co-expression with vesicular glutamate transporter 3 in rat forebrain. Neurosci. Lett. 432:132–36 [Google Scholar]
  110. Higley MJ, Gittis AH, Oldenburg IA, Balthasar N, Seal RP. 110.  et al. 2011. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS ONE 6:e19155 [Google Scholar]
  111. Ren J, Qin C, Hu F, Tan J, Qiu L. 111.  et al. 2011. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–52Relies on optogenetics to demonstrate a glutamatergic response in the interpeduncular nucleus elicited by optical stimulation of cholinergic projections from the medial habenula. [Google Scholar]
  112. Onoa B, Li H, Gagnon-Bartsch JA, Elias LA, Edwards RH. 112.  2010. Vesicular monoamine and glutamate transporters select distinct synaptic vesicle recycling pathways. J. Neurosci. 30:7917–27Using heterologous expression in primary dissociated culture, this study shows that VGLUT2 and VMAT2 traffic to overlapping but distinct synaptic boutons and respond differently to stimulation when expressed in midbrain dopamine neurons. [Google Scholar]
  113. Rizzoli SO, Betz WJ. 113.  2005. Synaptic vesicle pools. Nat. Rev. Neurosci. 6:57–69 [Google Scholar]
  114. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH. 114.  et al. 2001. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–60 [Google Scholar]
  115. Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z. 115.  et al. 2006. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84 [Google Scholar]
  116. Weston MC, Nehring RB, Wojcik SM, Rosenmund C. 116.  2011. Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69:1147–59 [Google Scholar]
/content/journals/10.1146/annurev-physiol-020911-153315
Loading
/content/journals/10.1146/annurev-physiol-020911-153315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error