1932

Abstract

Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-022221-063725
2021-09-29
2024-06-06
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-022221-063725.html?itemId=/content/journals/10.1146/annurev-virology-022221-063725&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Harrison SC. 2015. Viral membrane fusion. Virology 479:498–507
    [Google Scholar]
  2. 2. 
    Earp LJ, Delos SE, Park HE, White JM 2004. The many mechanisms of viral membrane fusion proteins. Membrane Trafficking in Viral Replication M Marsh 25–66 Berlin: Springer
    [Google Scholar]
  3. 3. 
    Acosta EG, Castilla V, Damonte EB. 2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol. 89:474–84
    [Google Scholar]
  4. 4. 
    Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J et al. 2006. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80:6964–72
    [Google Scholar]
  5. 5. 
    Empig CJ, Goldsmith MA. 2002. Association of the caveola vesicular system with cellular entry by filoviruses. J. Virol. 76:5266–70
    [Google Scholar]
  6. 6. 
    Zhu Y-Z, Xu Q-Q, Wu D-G, Ren H, Zhao P et al. 2012. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J. Virol. 86:13407–22
    [Google Scholar]
  7. 7. 
    Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D et al. 2010. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol. 84:243–53
    [Google Scholar]
  8. 8. 
    Millet JK, Whittaker GR. 2015. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 202:120–34
    [Google Scholar]
  9. 9. 
    Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J. 2006. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80:4174–78
    [Google Scholar]
  10. 10. 
    Hulseberg CE, Fénéant L, Szymańska KM, White JM. 2018. Lamp1 increases the efficiency of Lassa virus infection by promoting fusion in less acidic endosomal compartments. mBio 9:e01818-17
    [Google Scholar]
  11. 11. 
    Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS et al. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–10
    [Google Scholar]
  12. 12. 
    Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G et al. 2011. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477:340–43
    [Google Scholar]
  13. 13. 
    Wang H, Shi Y, Song J, Qi J, Lu G et al. 2016. Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164:258–68
    [Google Scholar]
  14. 14. 
    Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73
    [Google Scholar]
  15. 15. 
    Bullough PA, Hughson FM, Skehel JJ, Wiley DC. 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  16. 16. 
    Chan DC, Fass D, Berger JM, Kim PS. 1997. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–73
    [Google Scholar]
  17. 17. 
    Weissenhorn W, Dessen A, Harrison S, Skehel J, Wiley D. 1997. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–30
    [Google Scholar]
  18. 18. 
    Weissenhorn W, Carfí A, Lee K-H, Skehel JJ, Wiley DC. 1998. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2:605–16
    [Google Scholar]
  19. 19. 
    Zhao X, Singh M, Malashkevich VN, Kim PS 2000. Structural characterization of the human respiratory syncytial virus fusion protein core. PNAS 97:14172–77
    [Google Scholar]
  20. 20. 
    Yin H-S, Wen X, Paterson RG, Lamb RA, Jardetzky TS. 2006. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation.. Nature 439:38–44
    [Google Scholar]
  21. 21. 
    Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM et al. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature 531:118–21
    [Google Scholar]
  22. 22. 
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–63
    [Google Scholar]
  23. 23. 
    Böttcher C, Ludwig K, Herrmann A, van Heel M, Stark H. 1999. Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Lett 463:255–59
    [Google Scholar]
  24. 24. 
    Daniels RS, Downie JC, Hay AJ, Knossow M, Skehel JJ et al. 1985. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–39
    [Google Scholar]
  25. 25. 
    Carr CM, Kim PS. 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–32
    [Google Scholar]
  26. 26. 
    Tsurudome M, Glück R, Graf R, Falchetto R, Schaller U, Brunner J. 1992. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J. Biol. Chem. 267:20225–32
    [Google Scholar]
  27. 27. 
    Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk H-D, Garten W. 1992. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gpl60. Nature 360:358–61
    [Google Scholar]
  28. 28. 
    Lu M, Blacklow SC, Kim PS. 1995. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat. Struct. Biol. 2:1075–82
    [Google Scholar]
  29. 29. 
    Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S. 2008. Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–13
    [Google Scholar]
  30. 30. 
    Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–59
    [Google Scholar]
  31. 31. 
    Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC. 2005. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433:834–41
    [Google Scholar]
  32. 32. 
    Speck RF, Wehrly K, Platt EJ, Atchison RE, Charo IF et al. 1997. Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J. Virol. 71:7136–39
    [Google Scholar]
  33. 33. 
    Chan DC, Kim PS. 1998. HIV entry and its inhibition. Cell 93:681–84
    [Google Scholar]
  34. 34. 
    Tan K, Liu J, Wang J, Shen S, Lu M 1997. Atomic structure of a thermostable subdomain of HIV-1 gp41. PNAS 94:12303–8
    [Google Scholar]
  35. 35. 
    Colman PM, Lawrence MC. 2003. The structural biology of type I viral membrane fusion. Nat. Rev. Mol. Cell Biol. 4:309–19
    [Google Scholar]
  36. 36. 
    Chan DC, Chutkowski CT, Kim PS 1998. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. PNAS 95:15613–17
    [Google Scholar]
  37. 37. 
    Debnath AK, Radigan L, Jiang S. 1999. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J. Med. Chem. 42:3203–9
    [Google Scholar]
  38. 38. 
    Armand-Ugón M, Clotet-Codina I, Tintori C, Manetti F, Clotet B et al. 2005. The anti-HIV activity of ADS-J1 targets the HIV-1 gp120. Virology 343:141–49
    [Google Scholar]
  39. 39. 
    González-Ortega E, Mena M-P, Permanyer M, Ballana E, Clotet B, Esté JA. 2010. ADS-J1 inhibits HIV-1 entry by interacting with gp120 and does not block fusion-active gp41 core formation. Antimicrob. Agents Chemother. 54:4487–92
    [Google Scholar]
  40. 40. 
    Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS. 1999. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99:103–15
    [Google Scholar]
  41. 41. 
    Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS 2007. Potent D-peptide inhibitors of HIV-1 entry. PNAS 104:16828–33
    [Google Scholar]
  42. 42. 
    Wang H, Qi Z, Guo A, Mao Q, Lu H et al. 2009. ADS-J1 inhibits human immunodeficiency virus type 1 entry by interacting with the gp41 pocket region and blocking fusion-active gp41 core formation. Antimicrob. Agents Chemother. 53:4987–98
    [Google Scholar]
  43. 43. 
    Yu F, Lu L, Liu Q, Yu X, Wang L et al. 2014. ADS-J1 inhibits HIV-1 infection and membrane fusion by targeting the highly conserved pocket in the gp41 NHR-trimer. Biochim. Biophys. Acta Biomembr. 1838:1296–305
    [Google Scholar]
  44. 44. 
    Root MJ, Kay MS, Kim PS. 2001. Protein design of an HIV-1 entry inhibitor. Science 291:884–88
    [Google Scholar]
  45. 45. 
    Frey G, Rits-Volloch S, Zhang X-Q, Schooley RT, Chen B, Harrison SC 2006. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. PNAS 103:13938–43
    [Google Scholar]
  46. 46. 
    Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK. 2004. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother. 48:4349–59
    [Google Scholar]
  47. 47. 
    Xiao T, Frey G, Fu Q, Lavine CL, Scott DA et al. 2020. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat. Chem. Biol. 16:529–37
    [Google Scholar]
  48. 48. 
    Fu Q, Shaik MM, Cai Y, Ghantous F, Piai A et al. 2018. Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. PNAS 115:E8892–99
    [Google Scholar]
  49. 49. 
    Salzwedel K, West JT, Hunter E. 1999. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 73:2469–80
    [Google Scholar]
  50. 50. 
    Montero M, van Houten NE, Wang X, Scott JK 2008. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. . Mol. Biol. Rev. 72:54–84
    [Google Scholar]
  51. 51. 
    Muster T, Steindl F, Purtscher M, Trkola A, Klima A et al. 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67:6642–47
    [Google Scholar]
  52. 52. 
    Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R et al. 2001. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retrovir. 17:1757–65
    [Google Scholar]
  53. 53. 
    Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA et al. 2012. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491:406–12
    [Google Scholar]
  54. 54. 
    Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR et al. 2008. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. PNAS 105:17736–41
    [Google Scholar]
  55. 55. 
    Kadam RU, Wilson IA 2017. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. PNAS 114:206–14
    [Google Scholar]
  56. 56. 
    Battles MB, Langedijk JP, Furmanova-Hollenstein P, Chaiwatpongsakorn S, Costello HM et al. 2016. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 12:87–93
    [Google Scholar]
  57. 57. 
    Roymans D, Alnajjar SS, Battles MB, Sitthicharoenchai P, Furmanova-Hollenstein P et al. 2017. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat. Commun. 8:167
    [Google Scholar]
  58. 58. 
    Zhao Y, Ren J, Harlos K, Jones DM, Zeltina A et al. 2016. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535:169–72
    [Google Scholar]
  59. 59. 
    Roymans D, De Bondt HL, Arnoult E, Geluykens P, Gevers T et al. 2010. Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. PNAS 107:308–13
    [Google Scholar]
  60. 60. 
    Skehel JJ, Wiley DC. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–69
    [Google Scholar]
  61. 61. 
    Chen GL, Subbarao K. 2009. Attacking the flu: Neutralizing antibodies may lead to ‘universal’ vaccine. Nat. Med. 15:1251–52
    [Google Scholar]
  62. 62. 
    Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID. 1993. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 32:2967–78
    [Google Scholar]
  63. 63. 
    Hoffman LR, Kuntz ID, White JM. 1997. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity. J. Virol. 71:8808–20
    [Google Scholar]
  64. 64. 
    Leneva IA, Russell RJ, Boriskin YS, Hay AJ. 2009. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiv. Res. 81:132–40
    [Google Scholar]
  65. 65. 
    van Dongen MJP, Kadam RU, Juraszek J, Lawson E, Brandenburg B et al. 2019. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 363:eaar6221
    [Google Scholar]
  66. 66. 
    Yao Y, Kadam RU, Lee C-CD, Woehl JL, Wu NC et al. 2020. An influenza A hemagglutinin small-molecule fusion inhibitor identified by a new high-throughput fluorescence polarization screen. PNAS 117:18431–38
    [Google Scholar]
  67. 67. 
    Volchkov VE, Feldmann H, Volchkova VA, Klenk H-D 1998. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. PNAS 95:5762–67
    [Google Scholar]
  68. 68. 
    Mulherkar N, Raaben M, de la Torre JC, Whelan SP, Chandran K. 2011. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology 419:72–83
    [Google Scholar]
  69. 69. 
    Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. 2005. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308:1643–45
    [Google Scholar]
  70. 70. 
    Bornholdt ZA, Ndungo E, Fusco ML, Bale S, Flyak AI et al. 2016. Host-primed Ebola virus GP exposes a hydrophobic NPC1 receptor-binding pocket, revealing a target for broadly neutralizing antibodies. mBio 7:e02154-15
    [Google Scholar]
  71. 71. 
    Harrison SC. 2008. Viral membrane fusion. Nat. Struct. Mol. Biol. 15:690–98
    [Google Scholar]
  72. 72. 
    Basu A, Li B, Mills DM, Panchal RG, Cardinale SC et al. 2011. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol. 85:3106–19
    [Google Scholar]
  73. 73. 
    Singleton CD, Humby MS, Yi HA, Rizzo RC, Jacobs A. 2019. Identification of Ebola virus inhibitors targeting GP2 using principles of molecular mimicry. J. Virol. 93:e00676-19
    [Google Scholar]
  74. 74. 
    Johansen LM, Brannan JM, Delos SE, Shoemaker CJ, Stossel A et al. 2013. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci. Transl. Med. 5:190ra79
    [Google Scholar]
  75. 75. 
    Ren J, Zhao Y, Fry EE, Stuart DI. 2018. Target identification and mode of action of four chemically divergent drugs against Ebolavirus infection. J. Med. Chem. 61:724–33
    [Google Scholar]
  76. 76. 
    Gaisina IN, Peet NP, Wong L, Schafer AM, Cheng H et al. 2020. Discovery and structural optimization of 4-(aminomethyl) benzamides as potent entry inhibitors of Ebola and Marburg virus infections. J. Med. Chem. 63:7211–25
    [Google Scholar]
  77. 77. 
    Cui Q, Cheng H, Xiong R, Zhang G, Du R et al. 2018. Identification of diaryl-quinoline compounds as entry inhibitors of Ebola virus. Viruses 10:678
    [Google Scholar]
  78. 78. 
    Karron RA, Buonagurio DA, Georgiu AF, Whitehead SS, Adamus JE et al. 1997. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. PNAS 94:13961–66
    [Google Scholar]
  79. 79. 
    Schlender J, Zimmer G, Herrler G, Conzelmann K-K. 2003. Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J. Virol. 77:4609–16
    [Google Scholar]
  80. 80. 
    McLellan JS, Ray WC, Peeples ME 2013. Structure and function of respiratory syncytial virus surface glycoproteins. Challenges and Opportunities for Respiratory Syncytial Virus Vaccines LJ Anderson, BS Graham 83–104 Berlin: Springer
    [Google Scholar]
  81. 81. 
    Yin H-S, Wen X, Paterson RG, Lamb RA, Jardetzky TS. 2006. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439:38–44
    [Google Scholar]
  82. 82. 
    Cianci C, Yu K-L, Combrink K, Sin N, Pearce B et al. 2004. Orally active fusion inhibitor of respiratory syncytial virus. Antimicrob. Agents Chemother. 48:413–22
    [Google Scholar]
  83. 83. 
    Andries K, Moeremans M, Gevers T, Willebrords R, Sommen C et al. 2003. Substituted benzimidazoles with nanomolar activity against respiratory syncytial virus. Antiv. Res. 60:209–19
    [Google Scholar]
  84. 84. 
    Douglas JL, Panis ML, Ho E, Lin K-Y, Krawczyk SH et al. 2003. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J. Virol. 77:5054–64
    [Google Scholar]
  85. 85. 
    Bonfanti J-F, Meyer C, Doublet F, Fortin J, Muller P et al. 2008. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121). J. Med. Chem. 51:875–96
    [Google Scholar]
  86. 86. 
    Mackman RL, Sangi M, Sperandio D, Parrish JP, Eisenberg E et al. 2015. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study. J. Med. Chem. 58:1630–43
    [Google Scholar]
  87. 87. 
    Bonfanti J-F, Doublet F, Fortin J, Lacrampe J, Guillemont J et al. 2007. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate, part 1: improving the pharmacokinetic profile using the structure–property relationship. J. Med. Chem. 50:4572–84
    [Google Scholar]
  88. 88. 
    Cianci C, Langley DR, Dischino DD, Sun Y, Yu K-L et al. 2004. Targeting a binding pocket within the trimer-of-hairpins: small-molecule inhibition of viral fusion. PNAS 101:15046–51
    [Google Scholar]
  89. 89. 
    McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GBE et al. 2013. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342:592–98
    [Google Scholar]
  90. 90. 
    Sun A, Prussia A, Zhan W, Murray EE, Doyle J et al. 2006. Nonpeptide inhibitors of measles virus entry. J. Med. Chem. 49:5080–92
    [Google Scholar]
  91. 91. 
    Plemper RK, Doyle J, Sun A, Prussia A, Cheng L-T et al. 2005. Design of a small-molecule entry inhibitor with activity against primary measles virus strains. Antimicrob. Agents Chemother. 49:3755–61
    [Google Scholar]
  92. 92. 
    Hashiguchi T, Fukuda Y, Matsuoka R, Kuroda D, Kubota M et al. 2018. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors. PNAS 115:2496–501
    [Google Scholar]
  93. 93. 
    Plemper RK, Erlandson KJ, Lakdawala AS, Sun A, Prussia A et al. 2004. A target site for template-based design of measles virus entry inhibitors. PNAS 101:5628–33
    [Google Scholar]
  94. 94. 
    Niedermeier S, Singethan K, Rohrer SG, Matz M, Kossner M et al. 2009. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion. J. Med. Chem. 52:4257–65
    [Google Scholar]
  95. 95. 
    Marcink T, Yariv E, Rybkina K, Más V, Bovier F et al. 2020. Hijacking the fusion complex of human parainfluenza virus as an antiviral strategy. mBio 11:e03203-19
    [Google Scholar]
  96. 96. 
    Farzan SF, Palermo LM, Yokoyama CC, Orefice G, Fornabaio M et al. 2011. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. J. Biol. Chem. 286:37945–54
    [Google Scholar]
  97. 97. 
    Porotto M, Murrell M, Greengard O, Moscona A. 2003. Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: an HN mutation diminishes the rate of F activation and fusion. J. Virol. 77:3647–54
    [Google Scholar]
  98. 98. 
    Bottom-Tanzer SF, Rybkina K, Bell JN, Alabi CA, Mathieu C et al. 2019. Inhibiting human parainfluenza virus infection by preactivating the cell entry mechanism. mBio 10:e02900-18
    [Google Scholar]
  99. 99. 
    Adedeji AO, Severson W, Jonsson C, Singh K, Weiss SR, Sarafianos SG. 2013. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol. 87:8017–28
    [Google Scholar]
  100. 100. 
    Chen CZ, Xu M, Pradhan M, Gorshkov K, Petersen JD et al. 2020. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci. 3:1165–75
    [Google Scholar]
  101. 101. 
    Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–98
    [Google Scholar]
  102. 102. 
    Modis Y, Ogata S, Clements D, Harrison SC 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. PNAS 100:6986–91
    [Google Scholar]
  103. 103. 
    Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH. 2006. Crystal structure of the West Nile virus envelope glycoprotein. J. Virol. 80:11467–74
    [Google Scholar]
  104. 104. 
    Gibbons DL, Vaney M-C, Roussel A, Vigouroux A, Reilly B et al. 2004. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature 427:320–25
    [Google Scholar]
  105. 105. 
    Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD et al. 2001. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–48
    [Google Scholar]
  106. 106. 
    Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. 2010. Structural changes of envelope proteins during alphavirus fusion. Nature 468:705–8
    [Google Scholar]
  107. 107. 
    Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C et al. 2010. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–12
    [Google Scholar]
  108. 108. 
    DuBois RM, Vaney M-C, Tortorici MA, Al Kurdi R, Barba-Spaeth G et al. 2013. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493:552–56
    [Google Scholar]
  109. 109. 
    Dessau M, Modis Y 2013. Crystal structure of glycoprotein C from Rift Valley fever virus. PNAS 110:1696–701
    [Google Scholar]
  110. 110. 
    Halldorsson S, Behrens A-J, Harlos K, Huiskonen JT, Elliott RM et al. 2016. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. PNAS 113:7154–59
    [Google Scholar]
  111. 111. 
    Överby AK, Pettersson RF, Grünewald K, Huiskonen JT 2008. Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. PNAS 105:2375–79
    [Google Scholar]
  112. 112. 
    Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J et al. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–25
    [Google Scholar]
  113. 113. 
    Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV et al. 2003. Structures of immature flavivirus particles. EMBO J 22:2604–13
    [Google Scholar]
  114. 114. 
    Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA et al. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–37
    [Google Scholar]
  115. 115. 
    Li L, Lok S-M, Yu IM, Zhang Y, Kuhn RJ et al. 2008. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–34
    [Google Scholar]
  116. 116. 
    De Curtis I, Simons K 1988. Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. PNAS 85:8052–56
    [Google Scholar]
  117. 117. 
    Uchime O, Fields W, Kielian M. 2013. The role of E3 in pH protection during alphavirus assembly and exit. J. Virol. 87:10255–62
    [Google Scholar]
  118. 118. 
    Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG 2017. Structural studies of Chikungunya virus maturation. PNAS 114:13703–7
    [Google Scholar]
  119. 119. 
    Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S et al. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–38
    [Google Scholar]
  120. 120. 
    Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–19
    [Google Scholar]
  121. 121. 
    Cecilia D, Gould EA 1991. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181:70–77
    [Google Scholar]
  122. 122. 
    Liao M, Kielian M. 2005. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J. Cell Biol. 171:111–20
    [Google Scholar]
  123. 123. 
    Schmidt AG, Yang PL, Harrison SC. 2010. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol. 84:12549–54
    [Google Scholar]
  124. 124. 
    Monath TP, Arroyo J, Levenbook I, Zhang Z-X, Catalan J et al. 2002. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J. Virol. 76:1932–43
    [Google Scholar]
  125. 125. 
    Lee E, Weir RC, Dalgarno L. 1997. Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology 232:281–90
    [Google Scholar]
  126. 126. 
    Kampmann T, Yennamalli R, Campbell P, Stoermer MJ, Fairlie DP et al. 2009. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiv. Res. 84:234–41
    [Google Scholar]
  127. 127. 
    Poh MK, Yip A, Zhang S, Priestle JP, Ma NL et al. 2009. A small molecule fusion inhibitor of dengue virus. Antiv. Res. 84:260–66
    [Google Scholar]
  128. 128. 
    Wang Q-Y, Patel SJ, Vangrevelinghe E, Xu HY, Rao R et al. 2009. A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother. 53:1823–31
    [Google Scholar]
  129. 129. 
    Yennamalli R, Subbarao N, Kampmann T, McGeary RP, Young PR, Kobe B. 2009. Identification of novel target sites and an inhibitor of the dengue virus E protein. J. Comput. Aided Mol. Des. 23:333–41
    [Google Scholar]
  130. 130. 
    Zhou Z, Khaliq M, Suk J-E, Patkar C, Li L et al. 2008. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol. 3:765–75
    [Google Scholar]
  131. 131. 
    Adrián FJ, Ding Q, Sim T, Velentza A, Sloan C et al. 2006. Allosteric inhibitors of Bcr-abl–dependent cell proliferation. Nat. Chem. Biol. 2:95–102
    [Google Scholar]
  132. 132. 
    Clark MJ, Miduturu C, Schmidt AG, Zhu X, Pitts JD et al. 2016. GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein. Cell Chem. Biol. 23:443–52
    [Google Scholar]
  133. 133. 
    de Wispelaere M, Lian W, Potisopon S, Li P-C, Jang J et al. 2018. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol. 25:1006–16
    [Google Scholar]
  134. 134. 
    Schmidt AG, Yang PL, Harrison SC. 2010. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLOS Pathog 6:e1000851
    [Google Scholar]
  135. 135. 
    Li P-C, Jang J, Hsia C-Y, Groomes PV, Lian W et al. 2019. Small molecules targeting the flavivirus E protein with broad-spectrum activity and antiviral efficacy in vivo. ACS Infect. Dis. 5:460–72
    [Google Scholar]
  136. 136. 
    Lian W, Jang J, Potisopon S, Li P-C, Rahmeh A et al. 2018. Discovery of immunologically inspired small molecules that target the viral envelope protein. ACS Infect. Dis. 4:1395–406
    [Google Scholar]
  137. 137. 
    Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH et al. 2004. Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–18
    [Google Scholar]
  138. 138. 
    Modis Y, Ogata S, Clements D, Harrison SC. 2005. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 79:1223–31
    [Google Scholar]
  139. 139. 
    Kanai R, Kar K, Anthony K, Gould LH, Ledizet M et al. 2006. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol. 80:11000–8
    [Google Scholar]
  140. 140. 
    Pitts J, Hsia C-Y, Lian W, Wang J, Pfeil M-P et al. 2019. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiv. Res. 164:147–53
    [Google Scholar]
  141. 141. 
    Lindenbach BD, Rice CM. 2013. The ins and outs of hepatitis C virus entry and assembly. Nat. Rev. Microbiol. 11:688–700
    [Google Scholar]
  142. 142. 
    Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE et al. 2013. Hepatitis C virus E2 envelope glycoprotein core structure. Science 342:1090–94
    [Google Scholar]
  143. 143. 
    Khan AG, Whidby J, Miller MT, Scarborough H, Zatorski AV et al. 2014. Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509:381–84
    [Google Scholar]
  144. 144. 
    El Omari K, Iourin O, Kadlec J, Sutton G, Harlos K et al. 2014. Unexpected structure for the N-terminal domain of hepatitis C virus envelope glycoprotein E1. Nat. Commun. 5:4874
    [Google Scholar]
  145. 145. 
    El Omari K, Iourin O, Harlos K, Grimes JM, Stuart DI. 2013. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep 3:30–35
    [Google Scholar]
  146. 146. 
    Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S et al. 2002. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–25
    [Google Scholar]
  147. 147. 
    Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F et al. 1998. Binding of hepatitis C virus to CD81. Science 282:938–41
    [Google Scholar]
  148. 148. 
    Agnello V, Ábel G, Elfahal M, Knight GB, Zhang Q-X 1999. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. PNAS 96:12766–71
    [Google Scholar]
  149. 149. 
    Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H et al. 2002. Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J. Med. Virol. 68:206–15
    [Google Scholar]
  150. 150. 
    Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL et al. 2012. Hepatitis C virus induces CD81 and claudin-1 endocytosis. J. Virol. 86:4305–16
    [Google Scholar]
  151. 151. 
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M et al. 2007. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–5
    [Google Scholar]
  152. 152. 
    Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H et al. 2009. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–86
    [Google Scholar]
  153. 153. 
    Garry RF, Dash S. 2003. Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 307:255–65
    [Google Scholar]
  154. 154. 
    Perin PM, Haid S, Brown RJP, Doerrbecker J, Schulze K et al. 2016. Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology 63:49–62
    [Google Scholar]
  155. 155. 
    Li H-F, Huang C-H, Ai L-S, Chuang C-K, Chen SSL 2009. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J. Biomed. Sci. 16:89
    [Google Scholar]
  156. 156. 
    Lavillette D, Pécheur E-I, Donot P, Fresquet J, Molle J et al. 2007. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J. Virol. 81:8752–65
    [Google Scholar]
  157. 157. 
    Petracca R, Falugi F, Galli G, Norais N, Rosa D et al. 2000. Structure-function analysis of hepatitis C virus envelope-CD81 binding. J. Virol. 74:4824–30
    [Google Scholar]
  158. 158. 
    Hu Z, Lan K-H, He S, Swaroop M, Hu X et al. 2014. Novel cell-based hepatitis C virus infection assay for quantitative high-throughput screening of anti-hepatitis C virus compounds. Antimicrob. Agents Chemother. 58:995–1004
    [Google Scholar]
  159. 159. 
    Hu Z, Hu X, He S, Yim HJ, Xiao J et al. 2015. Identification of novel anti-hepatitis C virus agents by a quantitative high throughput screen in a cell-based infection assay. Antiv. Res. 124:20–29
    [Google Scholar]
  160. 160. 
    He S, Li K, Lin B, Hu Z, Xiao J et al. 2017. Development of an aryloxazole class of hepatitis C virus inhibitors targeting the entry stage of the viral replication cycle. J. Med. Chem. 60:6364–83
    [Google Scholar]
  161. 161. 
    Ma CD, Imamura M, Talley DC, Rolt A, Xu X et al. 2020. Fluoxazolevir inhibits hepatitis C virus infection in humanized chimeric mice by blocking viral membrane fusion. Nat. Microbiol. 5:1532–41
    [Google Scholar]
  162. 162. 
    Hu Z, Rolt A, Hu X, Ma CD, Le DJ et al. 2020. Chlorcyclizine inhibits viral fusion of hepatitis C virus entry by directly targeting HCV envelope glycoprotein 1. Cell Chem. Biol. 27:780–92.e5
    [Google Scholar]
  163. 163. 
    He S, Lin B, Chu V, Hu Z, Hu X et al. 2015. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci. Transl. Med. 7:282ra49
    [Google Scholar]
  164. 164. 
    Chao LH, Jang J, Johnson A, Nguyen A, Gray NS et al. 2018. How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion. eLife 7:e36461
    [Google Scholar]
  165. 165. 
    Tanner EJ, Liu H, Oberste MS, Pallansch M, Collett MS, Kirkegaard K 2014. Dominant drug targets suppress the emergence of antiviral resistance. eLife 3:e03830
    [Google Scholar]
  166. 166. 
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12
    [Google Scholar]
  167. 167. 
    Pessi A. 2015. Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases. J. Peptide Sci. 21:379–86
    [Google Scholar]
/content/journals/10.1146/annurev-virology-022221-063725
Loading
/content/journals/10.1146/annurev-virology-022221-063725
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error