1932

Abstract

The zinc finger antiviral protein (ZAP) restricts the replication of a broad range of RNA and DNA viruses. ZAP directly binds viral RNA, targeting it for degradation and inhibiting its translation. While the full scope of RNA determinants involved in mediating selective ZAP activity is unclear, ZAP binds CpG dinucleotides, dictating at least part of its target specificity. ZAP interacts with many cellular proteins, although only a few have been demonstrated to be essential for its antiviral activity, including the 3′–5′ exoribonuclease exosome complex, TRIM25, and KHNYN. In addition to inhibiting viral gene expression, ZAP also directly and indirectly targets a subset of cellular messenger RNAs to regulate the innate immune response. Overall, ZAP protects a cell from viral infection by restricting viral replication and regulating cellular gene expression. Further understanding of the ZAP antiviral system may allow for novel viral vaccine and anticancer therapy development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-104213
2021-09-29
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-104213.html?itemId=/content/journals/10.1146/annurev-virology-091919-104213&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hur S. 2019. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37:349–75
    [Google Scholar]
  2. 2. 
    Rodero MP, Crow YJ. 2016. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213:2527–38
    [Google Scholar]
  3. 3. 
    Gonçalves-Carneiro D, Takata MA, Ong H, Shilton A, Bieniasz PD. 2020. Origin and evolution of the zinc finger antiviral protein. PLOS Pathog 17:4e1009545
    [Google Scholar]
  4. 4. 
    Gao G, Guo X, Goff SP. 2002. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297:1703–6
    [Google Scholar]
  5. 5. 
    Kerns JA, Emerman M, Malik HS. 2008. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLOS Genet 4:e21
    [Google Scholar]
  6. 6. 
    Li MMH, Aguilar EG, Michailidis E, Pabon J, Park P et al. 2019. Characterization of novel splice variants of zinc finger antiviral protein (ZAP). J. Virol. 93:e00715-19
    [Google Scholar]
  7. 7. 
    Schwerk J, Soveg FW, Ryan AP, Thomas KR, Hatfield LD et al. 2019. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat. Immunol. 20:1610–20
    [Google Scholar]
  8. 8. 
    Gregersen LH, Mitter R, Ugalde AP, Nojima T, Proudfoot NJ et al. 2019. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell 177:1797–813.e18
    [Google Scholar]
  9. 9. 
    Guo X, Carroll JW, MacDonald MR, Goff SP, Gao G. 2004. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J. Virol. 78:12781–87
    [Google Scholar]
  10. 10. 
    Chen S, Xu Y, Zhang K, Wang X, Sun J et al. 2012. Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat. Struct. Mol. Biol. 19:430–35
    [Google Scholar]
  11. 11. 
    Xue G, Braczyk K, Gonçalves-Carneiro D, Ong H, Dawidziak DM et al. 2020. Poly(ADP-ribose) potentiates ZAP antiviral activity. bioRxiv 2020.12.17.423219. https://doi.org/10.1101/2020.12.17.423219
    [Crossref]
  12. 12. 
    Karlberg T, Klepsch M, Thorsell AG, Andersson CD, Linusson A, Schüler H. 2015. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. J. Biol. Chem. 290:7336–44
    [Google Scholar]
  13. 13. 
    Goossens KE, Karpala AJ, Ward A, Bean AG. 2014. Characterisation of chicken ZAP. Dev. Comp. Immunol. 46:373–81
    [Google Scholar]
  14. 14. 
    Meagher JL, Takata M, Gonçalves-Carneiro D, Keane SC, Rebendenne A et al. 2019. Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences. PNAS 116:24303–9
    [Google Scholar]
  15. 15. 
    Luo X, Wang X, Gao Y, Zhu J, Liu S et al. 2020. Molecular mechanism of RNA recognition by zinc-finger antiviral protein. Cell Rep 30:46–52.e4
    [Google Scholar]
  16. 16. 
    Daugherty MD, Young JM, Kerns JA, Malik HS. 2014. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLOS Genet 10:e1004403
    [Google Scholar]
  17. 17. 
    Charron G, Li MM, MacDonald MR, Hang HC 2013. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. PNAS 110:11085–90
    [Google Scholar]
  18. 18. 
    Todorova T, Bock FJ, Chang P 2014. PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat. Commun. 5:5362
    [Google Scholar]
  19. 19. 
    Liu L, Chen G, Ji X, Gao G 2004. ZAP is a CRM1-dependent nucleocytoplasmic shuttling protein. Biochem. Biophys. Res. Commun. 321:517–23
    [Google Scholar]
  20. 20. 
    Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. 2011. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42:489–99
    [Google Scholar]
  21. 21. 
    Law LMJ, Razooky BS, Li MMH, You S, Jurado A et al. 2019. ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication. PLOS Pathog 15:e1007798
    [Google Scholar]
  22. 22. 
    Moldovan JB, Moran JV. 2015. The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLOS Genet 11:e1005121
    [Google Scholar]
  23. 23. 
    Lee H, Komano J, Saitoh Y, Yamaoka S, Kozaki T et al. 2013. Zinc-finger antiviral protein mediates retinoic acid inducible gene I-like receptor-independent antiviral response to murine leukemia virus. PNAS 110:12379–84
    [Google Scholar]
  24. 24. 
    Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. 2015. The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLOS Genet 11:e1005252
    [Google Scholar]
  25. 25. 
    Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM et al. 2019. Properties of stress granule and P-body proteomes. Mol. Cell 76:286–94
    [Google Scholar]
  26. 26. 
    Wang N, Dong Q, Li J, Jangra RK, Fan M et al. 2010. Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-κB-independent. J. Biol. Chem. 285:6080–90
    [Google Scholar]
  27. 27. 
    Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C et al. 2011. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 12:37–44
    [Google Scholar]
  28. 28. 
    Law LMJ, Albin OR, Carroll JW, Jones CT, Rice CM, MacDonald MR. 2010. Identification of a dominant negative inhibitor of human zinc finger antiviral protein reveals a functional endogenous pool and critical homotypic interactions. J. Virol. 84:4504–12
    [Google Scholar]
  29. 29. 
    Guo X, Ma J, Sun J, Gao G 2007. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. PNAS 104:151–56
    [Google Scholar]
  30. 30. 
    Zhu Y, Chen G, Lv F, Wang X, Ji X et al. 2011. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. PNAS 108:15834–39
    [Google Scholar]
  31. 31. 
    Zhu Y, Wang X, Goff SP, Gao G. 2012. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J 31:4236–46
    [Google Scholar]
  32. 32. 
    Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR. 2003. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77:11555–62
    [Google Scholar]
  33. 33. 
    Wang X, Tu F, Zhu Y, Gao G. 2012. Zinc-finger antiviral protein inhibits XMRV infection. PLOS ONE 7:e39159
    [Google Scholar]
  34. 34. 
    Ficarelli M, Wilson H, Galão RP, Mazzon M, Antzin-Anduetza I et al. 2019. KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. eLife 8:e46767
    [Google Scholar]
  35. 35. 
    Miyazato P, Matsuo M, Tan BJY, Tokunaga M, Katsuya H et al. 2019. HTLV-1 contains a high CG dinucleotide content and is susceptible to the host antiviral protein ZAP. Retrovirology 16:38
    [Google Scholar]
  36. 36. 
    Zhu M, Ma X, Cui X, Zhou J, Li C et al. 2017. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein. Oncotarget 8:58865–71
    [Google Scholar]
  37. 37. 
    Zhu M, Zhou J, Ma X, Li G, He S et al. 2019. CCCH-type zinc finger antiviral protein is specifically overexpressed in spleen in response to subgroup J avian leukosis virus infection in chicken. Res. Vet. Sci. 123:65–70
    [Google Scholar]
  38. 38. 
    Zhu M, Zhou J, Liang Y, Nair V, Yao Y, Cheng Z. 2020. CCCH-type zinc finger antiviral protein mediates antiviral immune response by activating T cells. J. Leukoc. Biol. 107:299–307
    [Google Scholar]
  39. 39. 
    Erazo A, Goff SP. 2015. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology 12:57
    [Google Scholar]
  40. 40. 
    Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A et al. 2017. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550:124–27
    [Google Scholar]
  41. 41. 
    Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H et al. 2020. CpG dinucleotides inhibit HIV-1 replication through zinc finger antiviral protein (ZAP)-dependent and -independent mechanisms. J. Virol. 94:e01337-19
    [Google Scholar]
  42. 42. 
    Kmiec D, Nchioua R, Sherrill-Mix S, Stürzel CM, Heusinger E et al. 2020. CpG frequency in the 5′ third of the env gene determines sensitivity of primary HIV-1 strains to the zinc-finger antiviral protein. mBio 11:e02903-19
    [Google Scholar]
  43. 43. 
    OhAinle M, Helms L, Vermeire J, Roesch F, Humes D et al. 2018. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. eLife 7:e39823
    [Google Scholar]
  44. 44. 
    Chen EQ, Dai J, Bai L, Tang H. 2015. The efficacy of zinc finger antiviral protein against hepatitis B virus transcription and replication in tansgenic mouse model. Virol. J. 12:25
    [Google Scholar]
  45. 45. 
    Mao R, Nie H, Cai D, Zhang J, Liu H et al. 2013. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLOS Pathog. 9:e1003494
    [Google Scholar]
  46. 46. 
    Wang X, Li MMH, Zhao J, Li S, MacDonald MR et al. 2016. Sindbis virus can exploit a host antiviral protein to evade immune surveillance. J. Virol. 90:10247–58
    [Google Scholar]
  47. 47. 
    Kozaki T, Takahama M, Misawa T, Matsuura Y, Akira S, Saitoh T. 2015. Role of zinc-finger anti-viral protein in host defense against Sindbis virus. Int. Immunol. 27:357–64
    [Google Scholar]
  48. 48. 
    MacDonald MR, Machlin ES, Albin OR, Levy DE. 2007. The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J. Virol. 81:13509–18
    [Google Scholar]
  49. 49. 
    Gläsker S, Töller M, Kümmerer BM. 2014. The alternate triad motif of the poly(ADP-ribose) polymerase-like domain of the human zinc finger antiviral protein is essential for its antiviral activity. J. Gen. Virol. 95:816–22
    [Google Scholar]
  50. 50. 
    Chiu HP, Chiu H, Yang CF, Lee YL, Chiu FL et al. 2018. Inhibition of Japanese encephalitis virus infection by the host zinc-finger antiviral protein. PLOS Pathog 14:e1007166
    [Google Scholar]
  51. 51. 
    Li M, Yan K, Wei L, Yang J, Lu C et al. 2015. Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis. Antivir. Res. 123:50–61
    [Google Scholar]
  52. 52. 
    Xie L, Lu B, Zheng Z, Miao Y, Liu Y et al. 2018. The 3C protease of enterovirus A71 counteracts the activity of host zinc-finger antiviral protein (ZAP). J. Gen. Virol. 99:73–85
    [Google Scholar]
  53. 53. 
    Zhao Y, Song Z, Bai J, Liu X, Nauwynck H, Jiang P. 2019. ZAP, a CCCH-type zinc finger protein, inhibits porcine reproductive and respiratory syndrome virus replication and interacts with viral Nsp9. J. Virol. 93:e00001-19
    [Google Scholar]
  54. 54. 
    Zhao Y, Song Z, Bai J, Liu X, Nauwynck H, Jiang P. 2020. Porcine reproductive and respiratory syndrome virus Nsp4 cleaves ZAP to antagonize its antiviral activity. Vet. Microbiol. 250:108863
    [Google Scholar]
  55. 55. 
    Nchioua R, Kmiec D, Muller JA, Conzelmann C, Gross R et al. 2020. SARS-CoV-2 is restricted by zinc finger antiviral protein despite preadaptation to the low-CpG environment in humans. mBio 11:e01930-20
    [Google Scholar]
  56. 56. 
    Müller S, Möller P, Bick MJ, Wurr S, Becker S et al. 2007. Inhibition of filovirus replication by the zinc finger antiviral protein. J. Virol. 81:2391–400
    [Google Scholar]
  57. 57. 
    Liu CH, Zhou L, Chen G, Krug RM 2015. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. PNAS 112:14048–53
    [Google Scholar]
  58. 58. 
    Tang Q, Wang X, Gao G. 2017. The short form of the zinc finger antiviral protein inhibits influenza A virus protein expression and is antagonized by the virus-encoded NS1. J. Virol. 91:e01909-16
    [Google Scholar]
  59. 59. 
    Zhang B, Goraya MU, Chen N, Xu L, Hong Y et al. 2020. Zinc finger CCCH-type antiviral protein 1 restricts the viral replication by positively regulating type I interferon response. Front. Microbiol. 11:1912
    [Google Scholar]
  60. 60. 
    Lin YT, Chiweshe S, McCormick D, Raper A, Wickenhagen A et al. 2020. Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene. PLOS Pathog 16:e1008844
    [Google Scholar]
  61. 61. 
    Gonzalez-Perez AC, Stempel M, Wyler E, Urban C, Piras A et al. 2021. The zinc finger antiviral protein ZAP restricts human cytomegalovirus and selectively binds and destabilizes viral UL4/UL5 transcripts. mBio 12:e02683-20
    [Google Scholar]
  62. 62. 
    Su C, Zhang J, Zheng C. 2015. Herpes simplex virus 1 UL41 protein abrogates the antiviral activity of hZAP by degrading its mRNA. Virol. J. 12:203
    [Google Scholar]
  63. 63. 
    Xuan Y, Gong D, Qi J, Han C, Deng H, Gao G. 2013. ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA. J. Virol. 87:2735–43
    [Google Scholar]
  64. 64. 
    Peng C, Wyatt LS, Glushakow-Smith SG, Lal-Nag M, Weisberg AS, Moss B. 2020. Zinc-finger antiviral protein (ZAP) is a restriction factor for replication of modified vaccinia virus Ankara (MVA) in human cells. PLOS Pathog 16:e1008845
    [Google Scholar]
  65. 65. 
    Odon V, Fros JJ, Goonawardane N, Dietrich I, Ibrahim A et al. 2019. The role of ZAP and OAS3/RNAseL pathways in the attenuation of an RNA virus with elevated frequencies of CpG and UpA dinucleotides. Nucleic Acids Res 47:8061–83
    [Google Scholar]
  66. 66. 
    Loew L, Goonawardane N, Ratcliff J, Nguyen D, Simmonds P. 2020. Use of a small DNA virus model to investigate mechanisms of CpG dinucleotide-induced attenuation of virus replication. J. Gen. Virol. 101:1202–18
    [Google Scholar]
  67. 67. 
    Wang X, Lv F, Gao G. 2010. Mutagenesis analysis of the zinc-finger antiviral protein. Retrovirology 7:19
    [Google Scholar]
  68. 68. 
    Xuan Y, Liu L, Shen S, Deng H, Gao G. 2012. Zinc finger antiviral protein inhibits murine gammaherpesvirus 68 M2 expression and regulates viral latency in cultured cells. J. Virol. 86:12431–34
    [Google Scholar]
  69. 69. 
    Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. 2008. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLOS Pathog 4:e1000079
    [Google Scholar]
  70. 70. 
    Simmonds P, Xia W, Baillie JK, McKinnon K. 2013. Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla–selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. BMC Genom 14:610
    [Google Scholar]
  71. 71. 
    Rima BK, McFerran NV. 1997. Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J. Gen. Virol. 78:Part 112859–70
    [Google Scholar]
  72. 72. 
    Karlin S, Doerfler W, Cardon LR. 1994. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J. Virol. 68:2889–97
    [Google Scholar]
  73. 73. 
    Caudill VR, Qin S, Winstead R, Kaur J, Tisthammer K et al. 2020. CpG-creating mutations are costly in many human viruses. Evol. Ecol. 34:339–59
    [Google Scholar]
  74. 74. 
    Theys K, Feder AF, Gelbart M, Hartl M, Stern A, Pennings PS. 2018. Within-patient mutation frequencies reveal fitness costs of CpG dinucleotides and drastic amino acid changes in HIV. PLOS Genet 14:e1007420
    [Google Scholar]
  75. 75. 
    Wasson MK, Borkakoti J, Kumar A, Biswas B, Vivekanandan P. 2017. The CpG dinucleotide content of the HIV-1 envelope gene may predict disease progression. Sci. Rep. 7:8162
    [Google Scholar]
  76. 76. 
    Goonawardane N, Nguyen D, Simmonds P. 2021. Association of zinc finger antiviral protein binding to viral genomic RNA with attenuation of replication of echovirus 7. mSphere 6:1e01138-20
    [Google Scholar]
  77. 77. 
    Holliday R, Grigg GW. 1993. DNA methylation and mutation. Mutat. Res. 285:61–67
    [Google Scholar]
  78. 78. 
    Takata MA, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD. 2018. Global synonymous mutagenesis identifies cis-acting RNA elements that regulate HIV-1 splicing and replication. PLOS Pathog 14:e1006824
    [Google Scholar]
  79. 79. 
    Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. 2017. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 14:49
    [Google Scholar]
  80. 80. 
    Groenke N, Trimpert J, Merz S, Conradie AM, Wyler E et al. 2020. Mechanism of virus attenuation by codon pair deoptimization. Cell Rep 31:107586
    [Google Scholar]
  81. 81. 
    Caudron-Herger M, Rusin SF, Adamo ME, Seiler J, Schmid VK et al. 2019. R-DeeP: proteome-wide and quantitative identification of RNA-dependent proteins by density gradient ultracentrifugation. Mol. Cell 75:184–99.e10
    [Google Scholar]
  82. 82. 
    Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L et al. 2017. Architecture of the human interactome defines protein communities and disease networks. Nature 545:505–9
    [Google Scholar]
  83. 83. 
    Youn JY, Dunham WH, Hong SJ, Knight JDR, Bashkurov M et al. 2018. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69:517–32.e11
    [Google Scholar]
  84. 84. 
    Choudhury NR, Heikel G, Michlewski G. 2020. TRIM25 and its emerging RNA-binding roles in antiviral defense. Wiley Interdiscip. Rev. RNA 11:e1588
    [Google Scholar]
  85. 85. 
    Li MM, Lau Z, Cheung P, Aguilar EG, Schneider WM et al. 2017. TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLOS Pathog 13:e1006145
    [Google Scholar]
  86. 86. 
    Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G. 2017. TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J. Virol. 91:e00088-17
    [Google Scholar]
  87. 87. 
    Gebauer F, Schwarzl T, Valcarcel J, Hentze MW. 2021. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22:185–98
    [Google Scholar]
  88. 88. 
    Choudhury NR, Heikel G, Trubitsyna M, Kubik P, Nowak JS et al. 2017. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol 15:105
    [Google Scholar]
  89. 89. 
    Sanchez JG, Sparrer KMJ, Chiang C, Reis RA, Chiang JJ et al. 2018. TRIM25 binds RNA to modulate cellular anti-viral defense. J. Mol. Biol. 430:5280–93
    [Google Scholar]
  90. 90. 
    Wang HT, Hur S. 2021. Substrate recognition by TRIM and TRIM-like proteins in innate immunity. Semin. Cell Dev. Biol. 111:76–85
    [Google Scholar]
  91. 91. 
    Chen G, Guo X, Lv F, Xu Y, Gao G 2008. p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. PNAS 105:4352–57
    [Google Scholar]
  92. 92. 
    Ye P, Liu S, Zhu Y, Chen G, Gao G 2010. DEXH-Box protein DHX30 is required for optimal function of the zinc-finger antiviral protein. Protein Cell 1:956–64
    [Google Scholar]
  93. 93. 
    Marco A, Marín I. 2009. CGIN1: a retroviral contribution to mammalian genomes. Mol. Biol. Evol. 26:2167–70
    [Google Scholar]
  94. 94. 
    Anantharaman V, Aravind L. 2006. The NYN domains: novel predicted RNAses with a PIN domain-like fold. RNA Biol 3:18–27
    [Google Scholar]
  95. 95. 
    Castagnoli L, Mandaliti W, Nepravishta R, Valentini E, Mattioni A et al. 2019. Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J 286:653–77
    [Google Scholar]
  96. 96. 
    Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB et al. 2017. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biol 15:e2004086
    [Google Scholar]
  97. 97. 
    Schwartz SL, Conn GL. 2019. RNA regulation of the antiviral protein 2′–5′-oligoadenylate synthetase. Wiley Interdiscip. Rev. RNA 10:e1534
    [Google Scholar]
  98. 98. 
    Jackson RJ, Hellen CU, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11:113–27
    [Google Scholar]
  99. 99. 
    Sun L, Lv F, Guo X, Gao G. 2012. Glycogen synthase kinase 3β (GSK3β) modulates antiviral activity of zinc-finger antiviral protein (ZAP). J. Biol. Chem. 287:22882–88
    [Google Scholar]
  100. 100. 
    Wang Z-F, Wang X-L, Gao G-X. 2012. PR65A regulates the activity of the zinc finger antiviral protein. Prog. Biochem. Biophys. 39:431–37
    [Google Scholar]
  101. 101. 
    Cai J, Liu W, Wong CW, Zhu W, Lin Y et al. 2020. Zinc-finger antiviral protein acts as a tumor suppressor in colorectal cancer. Oncogene 39:5995–6008
    [Google Scholar]
  102. 102. 
    Duchaine TF, Fabian MR. 2019. Mechanistic insights into microRNA-mediated gene silencing. Cold Spring Harb. Perspect. Biol. 11:a032771
    [Google Scholar]
  103. 103. 
    Seo GJ, Kincaid RP, Phanaksri T, Burke JM, Pare JM et al. 2013. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14:435–45
    [Google Scholar]
  104. 104. 
    Martinez MA, Jordan-Paiz A, Franco S, Nevot M. 2016. Synonymous virus genome recoding as a tool to impact viral fitness. Trends Microbiol 24:134–47
    [Google Scholar]
  105. 105. 
    Gonçalves-Carneiro D, Bieniasz PD. 2021. Mechanisms of attenuation by genetic recoding of viruses. mBio 12:e02238-20
    [Google Scholar]
  106. 106. 
    Le Nouën C, Collins PL, Buchholz UJ. 2019. Attenuation of human respiratory viruses by synonymous genome recoding. Front. Immunol. 10:1250
    [Google Scholar]
  107. 107. 
    Gaunt E, Wise HM, Zhang H, Lee LN, Atkinson NJ et al. 2016. Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. eLife 5:e12735
    [Google Scholar]
  108. 108. 
    Trus I, Udenze D, Berube N, Wheler C, Martel MJ et al. 2019. CpG-recoding in Zika virus genome causes host-age-dependent attenuation of infection with protection against lethal heterologous challenge in mice. Front. Immunol. 10:3077
    [Google Scholar]
  109. 109. 
    Kunec D, Osterrieder N. 2016. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep 14:55–67
    [Google Scholar]
  110. 110. 
    Ying L, Cheng H, Xiong XW, Yuan L, Peng ZH et al. 2017. Interferon alpha antagonizes the anti-hepatoma activity of the oncolytic virus M1 by stimulating anti-viral immunity. Oncotarget 8:24694–705
    [Google Scholar]
  111. 111. 
    Liu Y, Hu C, Zhu WB, Xu WX, Li ZY et al. 2018. Association of low zinc finger antiviral protein expression with progression and poor survival of patients with hepatocellular carcinoma. Cell. Physiol. Biochem. 49:1007–18
    [Google Scholar]
  112. 112. 
    Lin Y, Zhang H, Liang J, Li K, Zhu W et al. 2014. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. PNAS 111:E4504–12
    [Google Scholar]
  113. 113. 
    Trus I, Berube N, Jiang P, Rak J, Gerdts V, Karniychuk U. 2020. Zika virus with increased CpG dinucleotide frequencies shows oncolytic activity in glioblastoma stem cells. Viruses 12:579
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-104213
Loading
/content/journals/10.1146/annurev-virology-091919-104213
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error