1932

Abstract

▪ Abstract 

The first mouse ( ) mutation was discovered over 60 years ago, and since then over 24 spontaneous and induced mutations have been identified at the locus. encodes a member of the Myc supergene family of asic elix-oop-elix per (bHLH-Zip) transcription factors. Like Myc, Mitf regulates gene expression by binding to DNA as a homodimer or as a heterodimer with another related family member, in the case of Mitf the Tfe3, Tfeb, and Tfec proteins. The study of Mitf has provided many insights into the biology of melanocytes and helped to explain how melanocyte-specific gene expression and signaling is regulated. The human homologue of is mutated in patients with the pigmentary and deafness disorder Waardenburg Syndrome Type 2A (WS2A). The mouse mutations therefore serve as a model for the study of this human disease. Mutations and/or aberrant expression of several family member genes have also been reported in human cancer, including melanoma (), papillary renal cell carcinoma (, ), and alveolar soft part sarcoma (). Genes in the pathway may therefore also represent valuable therapeutic targets for the treatment of human cancer. Here we review recent developments in the analysis of Mitf function in vivo and in vitro and show how traditional genetics, modern forward genetics and in vitro biochemical analyses have combined to produce an intriguing story on the role and actions of a gene family in a living organism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.38.072902.092717
2004-12-15
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/ge/38/1/annurev.genet.38.072902.092717.html?itemId=/content/journals/10.1146/annurev.genet.38.072902.092717&mimeType=html&fmt=ahah

Literature Cited

  1. Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD. et al. 1995. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 92:1789–93 [Google Scholar]
  2. Aberdam E, Bertolotto C, Sviderskaya EV, de Thillot V, Hemesath TJ. et al. 1998. Involvement of microphthalmia in the inhibition of melanocyte lineage differentiation and of melanogenesis by agouti signal protein. J. Biol. Chem. 273:19560–65 [Google Scholar]
  3. Adachi S, Morii E, Kim D, Ogihara H, Jippo T. et al. 2000. Involvement of mi-transcription factor in expression of alpha-melanocyte-stimulating hormone receptor in cultured mast cells of mice. J. Immunol. 164:855–60 [Google Scholar]
  4. Aksan I, Goding C. 1998. Targeting the microphthalmia basic helix-loop-helix leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell Biol. 18:6930–38 [Google Scholar]
  5. Altschmied J, Delfgaauw J, Wilde B, Duschl J, Bouneau L. et al. 2002. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161:259–67 [Google Scholar]
  6. Amae S, Fuse N, Yasumoto K, Sato S, Yajima I. et al. 1998. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 247:710–15 [Google Scholar]
  7. Amiel J, Watkin PM, Tassabehji M, Read AP, Winter RM. 1998. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin. Dysmorphol. 7:17–20 [Google Scholar]
  8. Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan MF, Ladanyi M. 2002. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J. Mol. Diagn. 4:44–52 [Google Scholar]
  9. Aoki H, Moro O. 2002. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci. 71:2171–79 [Google Scholar]
  10. Baumer N, Marquardt T, Stoykova A, Spieler D, Treichel D. et al. 2003. Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development 130:2903–15 [Google Scholar]
  11. Baxter LL, Pavan WJ. 2003. Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development. Gene Expr. Patterns 3:703–7 [Google Scholar]
  12. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N. et al. 1994. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–85 [Google Scholar]
  13. Beckmann H, Su L-K, Kadesch T. 1990. TFE3: A helix-loop-helix protein that activates transcription through the immunoglobulin enhancer μE3 motif. Genes Dev. 4:167–79 [Google Scholar]
  14. Béjar J, Hong Y, Schartl M. 2003. Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development 130:6545–53 [Google Scholar]
  15. Bennett DC. 1993. Genetics, development, and malignancy of melanocytes. Int. Rev. Cytol. 146:191–260 [Google Scholar]
  16. Bentley NJ, Eisen T, Goding CR. 1994. Melanocyte-specific expression of the human tyrosinase promoter: Activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14:7996–8006 [Google Scholar]
  17. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE. et al. 1998. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142:827–35 [Google Scholar]
  18. Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E. et al. 1998. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell Biol. 18:694–702 [Google Scholar]
  19. Besmer P, Manova K, Duttlinger R, Huang EJ, Packer A. et al. 1993. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev. Suppl.125–37 [Google Scholar]
  20. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O'Gorman S, Hunter T. 2000. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nat. Genet. 24:157–62 [Google Scholar]
  21. Boissy RE, Lamoreux ML. 1995. In vivo and in vitro morphological analysis of melanocytes homozygous for the misp allele at the murine microphthalmia locus. Pigment Cell Res. 8:294–301 [Google Scholar]
  22. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E. et al. 2000. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum. Mol. Genet. 9:1907–17 [Google Scholar]
  23. Busam KJ, Iversen K, Coplan KC, Jungbluth AA. 2001. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am. J. Surg. Pathol. 25:197–204 [Google Scholar]
  24. Busca R, Ballotti R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13:60–69 [Google Scholar]
  25. Cadigan KM. 2002. Wnt signaling-20 years and counting. Trends Genet. 18:340–42 [Google Scholar]
  26. Carreira S, Liu B, Goding CR. 2000. The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 275:21920–27 [Google Scholar]
  27. Chan HM, La Thangue NB. 2001. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114:2363–73 [Google Scholar]
  28. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S. et al. 1997. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15:2233–39 [Google Scholar]
  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  30. Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA. et al. 2003. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc. Natl. Acad. Sci. USA 100:6051–56 [Google Scholar]
  31. Deol MS. 1970. The relationship between abnormalities of pigmentation and of the inner ear. Proc. R. Soc. London Ser. A 175:201–17 [Google Scholar]
  32. Dorsky RI, Moon RT, Raible DW. 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396:370–73 [Google Scholar]
  33. Dorsky RI, Raible DW, Moon RT. 2000. Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14:158–62 [Google Scholar]
  34. Dorvault CC, Weilbaecher KN, Yee H, Fisher DE, Chiriboga LA. et al. 2001. Microphthalmia transcription factor: a sensitive and specific marker for malignant melanoma in cytologic specimens. Cancer 93:337–43 [Google Scholar]
  35. Du J, Fisher DE. 2002. Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J. Biol. Chem. 277:402–6 [Google Scholar]
  36. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. 2003. MLANA/MART1 and SILV/ PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 163:333–43 [Google Scholar]
  37. Dubreuil P, Forrester L, Rottapel R, Reedijk M, Fujita J, Bernstein A. 1991. The c-fms gene complements the mitogenic defect in mast cells derived from mutant W mice but not mi (microphthalmia) mice. Proc. Natl. Acad. Sci. USA 88:2341–45 [Google Scholar]
  38. Easty DJ, Bennett DC. 2000. Protein tyrosine kinases in malignant melanoma. Melanoma Res. 10:401–11 [Google Scholar]
  39. Ebi Y, Kanakura Y, Jippo-Kanemoto T, Tsujimura T, Furitsu T. et al. 1992. Low c-kit expression of cultured mast cells of mi/mi genotype may be involved in their defective responses to fibroblasts that express the ligand for c-kit. Blood 80:1454–62 [Google Scholar]
  40. Edery P, Attie T, Amiel J, Pelet A, Eng C. et al. 1996. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat. Genet. 12:442–44 [Google Scholar]
  41. Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN. 2003. Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development 130:2809–18 [Google Scholar]
  42. Englaro W, Bertolotto C, Busca R, Brunet A, Pages G. et al. 1998. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 273:9966–70 [Google Scholar]
  43. Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. 1995. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J. Biol. Chem. 270:24315–20 [Google Scholar]
  44. Deleted in proof
  45. Ferguson CA, Kidson SH. 1997. The regulation of tyrosinase gene transcription. Pigment Cell Res. 10:127–38 [Google Scholar]
  46. Frame S, Cohen P. 2001. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359:1–16 [Google Scholar]
  47. Fuse N, Yasumoto K, Suzuki H, Takahashi K, Shibahara S. 1996. Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Commun. 219:702–7 [Google Scholar]
  48. Fuse N, Yasumoto K, Takeda K, Amae S, Yoshizawa M. et al. 1999. Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J. Biochem. 126:1043–51 [Google Scholar]
  49. Gaggioli C, Busca R, Abbe P, Ortonne JP, Ballotti R. 2003. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 16:374–82 [Google Scholar]
  50. Ganss R, Schutz G, Beermann F. 1994. The mouse tyrosinase gene. Promoter modulation by positive and negative regulatory elements J. Biol. Chem. 269:29808–16 [Google Scholar]
  51. Ge Y, Jippo T, Lee YM, Adachi S, Kitamura Y. 2001. Independent influence of strain difference and mi transcription factor on the expression of mouse mast cell chymases. Am. J. Pathol. 158:281–92 [Google Scholar]
  52. Goding CR. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14:1712–28 [Google Scholar]
  53. Granter SR, Weilbaecher KN, Quigley C, Fisher DE. 2002. Role for microphthalmia transcription factor in the diagnosis of metastatic malignant melanoma. Appl. Immunohistochem. Mol. Morphol. 10:47–51 [Google Scholar]
  54. Granter SR, Weilbaecher KN, Quigley C, Fletcher CD, Fisher DE. 2001. Microphthalmia transcription factor: not a sensitive or specific marker for the diagnosis of desmoplastic melanoma and spindle cell (non-desmoplastic) melanoma. Am. J. Dermatopathol. 23:185–89 [Google Scholar]
  55. Graw J, Pretsch W, Loster J. 2003. Mutation in intron 6 of the hamster Mitf gene leads to skipping of the subsequent exon and creates a novel animal model for the human Waardenburg syndrome type II. Genetics 164:1035–41 [Google Scholar]
  56. Grobman AB, Charles DR. 1947. Mutant white mice. A new dominant autosomal mutant affecting coat color in Mus musculus. J. Hered. 38:381–84 [Google Scholar]
  57. Gu W, Roeder RG. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606 [Google Scholar]
  58. Hallsson JH, Favor J, Hodgkinson C, Glaser T, Lamoreux ML. et al. 2000. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 155:291–300 [Google Scholar]
  59. Hallsson JH, Haflidadottir BS, Stivers C, Odenwald W, Pignoni F. et al. 2004. The structure, expression and function of the bHLH-Zip transcription factor Mitf are conserved in Drosophila. Genetics 167:233–41 [Google Scholar]
  60. Hansdottir AG, Palsdottir K, Favor J, Neuhauser-Klaus A, Fuchs H. et al. 2004. The novel mouse microphthalmia mutations Mitf(mi-enu5) and Mitf(mi-bcc2) produce dominant negative Mitf proteins. Genomics 83:932–35 [Google Scholar]
  61. Hari L, Brault V, Kleber M, Lee HY, Ille F. et al. 2002. Lineage-specific requirements of beta-catenin in neural crest development. J. Cell Biol. 159:867–80 [Google Scholar]
  62. Heimann P, El Housni H, Ogur G, Weterman MA, Petty EM, Vassart G. 2001. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res. 61:4130–35 [Google Scholar]
  63. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. 1998. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391:298–301 [Google Scholar]
  64. Hemesath TJ, Steingrímsson E, McGill G, Hansen MJ, Vaught J. et al. 1994. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8:2770–80 [Google Scholar]
  65. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I. et al. 1998. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl. Acad. Sci. USA 95:5161–65 [Google Scholar]
  66. Hertwig P. 1942. Neue Mutationen und Kopplungsgruppen bei der Hausmaus. Z. Indukt. Abstamm.-Vererbungsl. 80:220–46 [Google Scholar]
  67. Hetherington C. 1976. Microphthalmic mutant in CBA strain. Mouse News Lett. 54:34 [Google Scholar]
  68. Hodgkinson CA, Moore KJ, Nakayama A, Steingrímsson E, Copeland NG. et al. 1993. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74:395–404 [Google Scholar]
  69. Hodgkinson CA, Nakayama A, Li H, Swenson LB, Opdecamp K. et al. 1998. Mutation at the anophthalmic white locus in Syrian hamsters: haploinsufficiency in the Mitf gene mimics human Waardenburg syndrome type 2. Hum. Mol. Genet. 7:703–8 [Google Scholar]
  70. Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ. et al. 1996. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat. Genet. 12:445–47 [Google Scholar]
  71. Hollander WF. 1964. Mouse News Lett. 30:29
  72. Hornyak TJ, Hayes DJ, Chiu LY, Ziff EB. 2001. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech. Dev. 101:47–59 [Google Scholar]
  73. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC. et al. 1994. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–76 [Google Scholar]
  74. Hou L, Panthier JJ, Arnheiter H. 2000. Signaling and transcriptional regulation in the neural crest–derived melanocyte lineage: interactions between Kit and Mitf. Development 127:5379–89 [Google Scholar]
  75. Huber WE, Price ER, Widlund HR, Du J, Davis IJ. et al. 2003. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 278:45224–30 [Google Scholar]
  76. Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP. 1993. A helix-loop-helix transcription factor-like gene is located at the mi locus. J. Biol. Chem. 268:20687–90 [Google Scholar]
  77. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. 1997. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–70 [Google Scholar]
  78. Ito A, Jippo T, Wakayama T, Morii E, Koma Y. et al. 2003. SgIGSF: a new mast-cell adhesion molecule used for attachment to fibroblasts and transcriptionally regulated by MITF. Blood 101:2601–8 [Google Scholar]
  79. Ito A, Morii E, Maeyama K, Jippo T, Kim DK. et al. 1998. Systematic method to obtain novel genes that are regulated by mi transcription factor: impaired expression of granzyme B and tryptophan hydroxylase in mi/mi cultured mast cells. Blood 91:3210–21 [Google Scholar]
  80. Iwamoto S, Burrows RC, Kalina RE, George D, Boehm M. et al. 2002. Immunophenotypic differences between uveal and cutaneous melanomas. Arch. Ophthalmol. 120:466–70 [Google Scholar]
  81. Jacquemin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP, Rousseau GG. 2001. The transcription factor onecut-2 controls the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Commun. 285:1200–5 [Google Scholar]
  82. Jippo T, Lee YM, Katsu Y, Tsujino K, Morii E. et al. 1999. Deficient transcription of mouse mast cell protease 4 gene in mutant mice of mi/mi genotype. Blood 93:1942–50 [Google Scholar]
  83. Jippo T, Morii E, Ito A, Kitamura Y. 2003. Effect of anatomical distribution of mast cells on their defense function against bacterial infections: demonstration using partially mast cell-deficient tg/tg mice. J. Exp. Med. 197:1417–25 [Google Scholar]
  84. Jippo T, Morii E, Tsujino K, Tsujimura T, Lee YM. et al. 1997. Involvement of transcription factor encoded by the mouse mi locus (MITF) in expression of p75 receptor of nerve growth factor in cultured mast cells of mice. Blood 90:2601–8 [Google Scholar]
  85. Jungbluth AA, King R, Fisher DE, Iversen K, Coplan K. et al. 2001. Immunohistochemical and reverse transcription-polymerase chain reaction expression analysis of tyrosinase and microphthalmia-associated transcription factor in angiomyolipomas. Appl. Immunohistochem. Mol. Morphol. 9:29–34 [Google Scholar]
  86. Kamachi Y, Uchikawa M, Kondoh H. 2000. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16:182–87 [Google Scholar]
  87. Kamaraju AK, Bertolotto C, Chebath J, Revel M. 2002. Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. J. Biol. Chem. 277:15132–41 [Google Scholar]
  88. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP. et al. 2002. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J. Biol. Chem. 277:33690–97 [Google Scholar]
  89. Kim DK, Morii E, Ogihara H, Hashimoto K, Oritani K. et al. 1998. Impaired expression of integrin alpha-4 subunit in cultured mast cells derived from mutant mice of mi/mi genotype. Blood 92:1973–80 [Google Scholar]
  90. King R, Googe PB, Weilbaecher KN, Mihm MC Jr.. Fisher DE. 2001. Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am. J. Surg. Pathol. 25:51–57 [Google Scholar]
  91. King R, Peterson AC, Peterson KC, Mihm MC Jr.. Fisher DE, Googe PB. 2002. Microphthalmia transcription factor expression in cutaneous mast cell disease. Am. J. Dermatopathol. 24:282–84 [Google Scholar]
  92. King R, Weilbaecher KN, McGill G, Cooley E, Mihm M, Fisher DE. 1999. Microphthalmia transcription factor: a sensitive and specific melanocyte marker for melanoma diagnosis. Am. J. Pathol. 155:731–38 [Google Scholar]
  93. Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y. et al. 2000. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 19:1312–26 [Google Scholar]
  94. Koch MB, Shih IM, Weiss SW, Folpe AL. 2001. Microphthalmia transcription factor and melanoma cell adhesion molecule expression distinguish desmoplastic/spindle cell melanoma from morphologic mimics. Am. J. Surg. Pathol. 25:58–64 [Google Scholar]
  95. Konyukhov BV, Osipov VV. 1968. Interallelic complementation of microphthalmia and white genes in mice. Genetika 4:65–76 [Google Scholar]
  96. Koo HM, VanBrocklin M, McWilliams MJ, Leppla SH, Duesbery NS, Woude GF. 2002. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl. Acad. Sci. USA 99:3052–57 [Google Scholar]
  97. Krakowsky JM, Boissy RE, Neumann JC, Lingrel JB. 1993. A DNA insertional mutation results in microphthalmia in transgenic mice. Transgenic Res. 2:14–20 [Google Scholar]
  98. Kreitner PC. 1957. Linkage studies in a new black-eyed white mutation. J. Hered. 48:300–4 [Google Scholar]
  99. Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E. et al. 2003. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 12:1661–69 [Google Scholar]
  100. Kumasaka M, Sato H, Sato S, Yajima I, Yamamoto H. 2004. Isolation and developmental expression of Mitf in Xenopus laevis. Dev. Dyn. 230:107–13 [Google Scholar]
  101. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A. et al. 2001. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20:48–57 [Google Scholar]
  102. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN. 1998. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273:33048–53 [Google Scholar]
  103. Larsen MM. 1966. Microphthalmia-brownish, Mib. Mouse News Lett. 34:41 [Google Scholar]
  104. Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR. 2000. Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J. Biol. Chem. 275:37978–83 [Google Scholar]
  105. Lerner AB. 1986. Designation of a provisional gene symbol for a new mouse mutant. Mouse News Lett. 74:125 [Google Scholar]
  106. Lerner AB, Shiohara T, Boissy RE, Jacobson KA, Lamoreux ML, Moellmann GE. 1986. A mouse model for vitiligo. J. Invest. Dermatol. 87:299–304 [Google Scholar]
  107. Levy C, Nechushtan H, Razin E. 2002. A new role for the STAT3 inhibitor, PIAS3: a repressor of microphthalmia transcription factor. J. Biol. Chem. 277:1962–66 [Google Scholar]
  108. Levy C, Sonnenblick A, Razin E. 2003. Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol. Cell. Biol. 23:9073–80 [Google Scholar]
  109. Li KK, Goodall J, Goding CR, Liao SK, Wang CH. et al. 2003. The melanocyte inducing factor MITF is stably expressed in cell lines from human clear cell sarcoma. Br. J. Cancer 89:1072–78 [Google Scholar]
  110. Lister JA, Close J, Raible DW. 2001. Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev. Biol. 237:333–44 [Google Scholar]
  111. Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW. 1999. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–67 [Google Scholar]
  112. Luchin A, Purdom G, Murphy K, Clark MY, Angel N. et al. 2000. The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J. Bone Min. Res. 15:451–60 [Google Scholar]
  113. Luchin A, Suchting S, Merson T, Rosol TJ, Hume DA. et al. 2001. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J. Biol. Chem. 276:36703–10 [Google Scholar]
  114. Ludwig A, Rehberg S, Wegner M. 2004. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 556:236–44 [Google Scholar]
  115. Makhlouf HR, Ishak KG, Shekar R, Sesterhenn IA, Young DY, Fanburg-Smith JC. 2002. Melanoma markers in angiomyolipoma of the liver and kidney: a comparative study. Arch. Pathol. Lab. Med. 126:49–55 [Google Scholar]
  116. Mansky KC, Marfatia K, Purdom GH, Luchin A, Hume DA, Ostrowski MC. 2002. The microphthalmia transcription factor (MITF) contains two N-terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts. J. Leukoc. Biol. 71:295–303 [Google Scholar]
  117. Mansky KC, Sankar U, Han J, Ostrowski MC. 2002. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J. Biol. Chem. 277:11077–83 [Google Scholar]
  118. Mansky KC, Sulzbacher S, Purdom G, Nelsen L, Hume DA. et al. 2002. The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. J. Leukoc. Biol. 71:304–10 [Google Scholar]
  119. Markert CL, Silvers WK. 1956. The effect of genotype and cell environment on melanoblast differentiation in the house mouse. Genetics 41:429–50 [Google Scholar]
  120. Martinez-Morales JR, Dolez V, Rodrigo I, Zaccarini R, Leconte L. et al. 2003. OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J. Biol. Chem. 278:21721–31 [Google Scholar]
  121. Mathur M, Das S, Samuels HH. 2003. PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene 22:5031–44 [Google Scholar]
  122. Matsumoto M, Hisatake K, Nogi Y, Tsujimoto M. 2001. Regulation of receptor activator of NF-kappaB ligand-induced tartrate-resistant acid phosphatase gene expression by PU.1-interacting protein/interferon regulatory factor-4. Synergism with microphthalmia transcription factor. J. Biol. Chem. 276:33086–92 [Google Scholar]
  123. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G. et al. 2002. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–18 [Google Scholar]
  124. Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. 2001. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am. J. Surg. Pathol. 25:205–11 [Google Scholar]
  125. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE. 2004. Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res. 64:509–16 [Google Scholar]
  126. Miller DS. 1963. Coat color and behavior mutations in inbred mice under chronic low-level γ-irradiation. Radiation Res. 19:184–85 [Google Scholar]
  127. Miner G. 1968. Mouse News Lett. 38:25
  128. Mochii M, Ono T, Matsubara Y, Eguchi G. 1998. Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Dev. Biol. 196:145–59 [Google Scholar]
  129. Moore KJ. 1995. Insight into the microphthalmia gene. Trends Genet. 11:442–48 [Google Scholar]
  130. Morii E, Jippo T, Tsujimura T, Hashimoto K, Kim DK. et al. 1997. Abnormal expression of mouse mast cell protease 5 gene in cultured mast cells derived from mutant mi/mi mice. Blood 90:3057–66 [Google Scholar]
  131. Morii E, Oboki K, Kataoka TR, Igarashi K, Kitamura Y. 2002. Interaction and cooperation of mi transcription factor (MITF) and myc-associated zinc-finger protein-related factor (MAZR) for transcription of mouse mast cell protease 6 gene. J. Biol. Chem. 277:8566–71 [Google Scholar]
  132. Morii E, Ogihara H, Kanno T, Kim DK, Nomura S. et al. 1999. Identification of the region of mi transcription factor which is responsible for the synergy with PEBP2/CBF. Biochem. Biophys. Res. Commun. 261:53–57 [Google Scholar]
  133. Morii E, Ogihara H, Oboki K, Sawa C, Sakuma T. et al. 2001. Inhibitory effect of the mi transcription factor encoded by the mutant mi allele on GA binding protein-mediated transcript expression in mouse mast cells. Blood 97:3032–39 [Google Scholar]
  134. Morii E, Tsujimura T, Jippo T, Hashimoto K, Takebayashi K. et al. 1996. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88:2488–94 [Google Scholar]
  135. Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE. 2001. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc. Natl. Acad. Sci. USA 98:5798–803 [Google Scholar]
  136. Mouriaux F, Vincent S, Kherrouche Z, Maurage CA, Planque N. et al. 2003. Microphthalmia transcription factor analysis in posterior uveal melanomas. Exp. Eye Res. 76:653–61 [Google Scholar]
  137. Munford RE. 1965. Mutation at Mi locus. Mouse News Lett. 33:52 [Google Scholar]
  138. Nakayama A, Nguyen MT, Chen CC, Opdecamp K, Hodgkinson CA, Arnheiter H. 1998. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest–derived melanocytes differently. Mech. Dev. 70:155–66 [Google Scholar]
  139. Nguyen M, Arnheiter H. 2000. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127:3581–91 [Google Scholar]
  140. Nobukuni Y, Watanabe A, Takeda K, Skarka H, Tachibana M. 1996. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. Am. J. Hum. Genet. 59:76–83 [Google Scholar]
  141. Oboki K, Morii E, Kataoka TR, Jippo T, Kitamura Y. 2002. Isoforms of mi transcription factor preferentially expressed in cultured mast cells of mice. Biochem. Biophys. Res. Commun. 290:1250–54 [Google Scholar]
  142. Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H. 1997. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124:2377–86 [Google Scholar]
  143. Opdecamp K, Vanvooren P, Riviere M, Arnheiter H, Motta R. et al. 1998. The rat microphthalmia-associated transcription factor gene (Mitf) maps at 4q34-q41 and is mutated in the mib rats. Mamm. Genome 9:617–21 [Google Scholar]
  144. O'Reilly FM, Brat DJ, McAlpine BE, Grossniklaus HE, Folpe AL, Arbiser JL. 2001. Microphthalmia transcription factor immunohistochemistry: a useful diagnostic marker in the diagnosis and detection of cutaneous melanoma, sentinel lymph node metastases, and extracutaneous melanocytic neoplasms. J. Am. Acad. Dermatol. 45:414–19 [Google Scholar]
  145. Packer SO. 1967. The eye and skeletal effects of two mutant alleles at the microphthalmia locus of Mus musculus. J. Exp. Zool. 165:21–45 [Google Scholar]
  146. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO. et al. 1998. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. Genet. 18:171–73 [Google Scholar]
  147. Planque N, Leconte L, Coquelle FM, Martin P, Saule S. 2001. Specific Pax-6/microphthalmia transcription factor interactions involve their DNA-binding domains and inhibit transcriptional properties of both proteins. J. Biol. Chem. 276:29330–37 [Google Scholar]
  148. Planque N, Turque N, Opdecamp K, Bailly M, Martin P, Saule S. 1999. Expression of the microphthalmia-associated basic helix-loop-helix leucine zipper transcription factor Mi in avian neuroretina cells induces a pigmented phenotype. Cell Growth Diff. 10:525–36 [Google Scholar]
  149. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. 2000. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum. Genet. 107:1–6 [Google Scholar]
  150. Price ER, Ding HF, Badalian T, Bhattacharya S, Takemoto C. et al. 1998. Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/ CBP to microphthalmia. J. Biol. Chem. 273:17983–86 [Google Scholar]
  151. Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM. et al. 1998. α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273:33042–47 [Google Scholar]
  152. Pusch C, Hustert E, Pfeifer D, Sudbeck P, Kist R. et al. 1998. The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum. Genet. 103:115–23 [Google Scholar]
  153. Read AP, Newton VE. 1997. Waardenburg Syndrome. J. Med. Genet. 34:656–65 [Google Scholar]
  154. Rehli M, Den Elzen N, Cassady AI, Ostrowski MC, Hume DA. 1999. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all Mit subfamily members. Genomics 56:111–20 [Google Scholar]
  155. Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. 1999. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J. Immunol. 162:1559–65 [Google Scholar]
  156. Roundy K, Kollhoff A, Eichwald EJ, Weis JJ, Weis JH. 1999. Microphthalmic mice display a B cell deficiency similar to that seen for mast and NK cells. J. Immunol. 163:6671–78 [Google Scholar]
  157. Saito H, Takeda K, Yasumoto K, Ohtani H, Watanabe K. et al. 2003. Germ cell-specific expression of microphthalmia-associated transcription factor mRNA in mouse testis. J. Biochem. 134:143–50 [Google Scholar]
  158. Saito H, Yasumoto K, Takeda K, Takahashi K, Fukuzaki A. et al. 2002. Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J. Biol. Chem. 277:28787–94 [Google Scholar]
  159. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M. et al. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–41 [Google Scholar]
  160. Salti GI, Manougian T, Farolan M, Shilkaitis A, Majumdar D, Das Gupta TK. 2000. Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 60:5012–16 [Google Scholar]
  161. Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I. 2002. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum. Mol. Genet. 11:3231–36 [Google Scholar]
  162. Sato M, Morii E, Takebayashi-Suzuki K, Yasui N, Ochi T. et al. 1999. Microphthalmia-associated transcription factor interacts with PU.1 and c-Fos: determination of their subcellular localization. Biochem. Biophys. Res. Commun. 254:384–87 [Google Scholar]
  163. Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR. 1997. CBP/ p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14:3083–92 [Google Scholar]
  164. Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M. et al. 2002. The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res. 62:2098–103 [Google Scholar]
  165. Sheffield MV, Yee H, Dorvault CC, Weilbaecher KN, Eltoum IA. et al. 2002. Comparison of five antibodies as markers in the diagnosis of melanoma in cytologic preparations. Am. J. Clin. Pathol. 118:930–36 [Google Scholar]
  166. Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K. et al. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13:(Suppl. 8)98–102 [Google Scholar]
  167. Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ. et al. 1996. The t(X;1)(p11.2; q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum. Mol. Genet. 5:1333–38 [Google Scholar]
  168. Skalsky YM, Ajuh PM, Parker C, Lamond AI, Goodwin G, Cooper CS. 2001. PRCC, the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre-mRNA splicing factors. Oncogene 20:178–87 [Google Scholar]
  169. Smart JL, Low MJ. 2003. Lack of proopiomelanocortin peptides results in obesity and defective adrenal function but normal melanocyte pigmentation in the murine C57BL/6 genetic background. Ann. NY Acad. Sci. 994:202–10 [Google Scholar]
  170. Smith SD, Kelley PM, Kenyon JB, Hoover D. 2000. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J. Med. Genet. 37:446–48 [Google Scholar]
  171. So H, Rho J, Jeong D, Park R, Fisher DE. et al. 2003. Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J. Biol. Chem. 278:24209–16 [Google Scholar]
  172. Southard JL. 1974. Mouse News Lett. 51:23
  173. Southard-Smith EM, Kos L, Pavan WJ. 1998. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18:60–64 [Google Scholar]
  174. Stechschulte DJ, Sharma R, Dileepan KN, Simpson KM, Aggarwal N. et al. 1987. Effect of the mi allele on mast cells, basophils, natural killer cells, and osteoclasts in C57Bl/6J mice. J. Cell. Physiol. 132:565–70 [Google Scholar]
  175. Steingrímsson E, Moore KJ, Lamoreux ML, Ferre-D'Amare AR, Burley SK. et al. 1994. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet. 8:256–63 [Google Scholar]
  176. Steingrímsson E, Nii A, Fisher DE, Ferre-D'Amare AR, McCormick RJ. et al. 1996. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization. EMBO J. 15:6280–89 [Google Scholar]
  177. Steingrímsson E, Arnheiter H, Hallsson JH, Lamoreux ML, Copeland NG, Jenkins NA. 2003. Interallelic complementation at the mouse Mitf locus. Genetics 163:267–76 [Google Scholar]
  178. Steingrímsson E, Favor J, Ferré-D'Amaré AF, Copeland NG, Jenkins NA. 1998. Mitf mi-enu122 is a missense mutation in the HLH dimerization domain. Mamm. Genome. 9:250–52 [Google Scholar]
  179. Steingrímsson E, Tessarollo L, Pathak B, Hou L, Arnheiter H. et al. 2002. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc. Natl. Acad. Sci. USA 99:4477–82 [Google Scholar]
  180. Stelzner KF. 1964. Mouse News Lett. 31:40
  181. Stelzner KF. 1966. Mouse News Lett. 34:41
  182. Sweet HO. 1996. Recessive spotting mutation mapped to the Mitf mi locus on chromosome 6. Mouse News Lett. 94:145 [Google Scholar]
  183. Tachibana M. 2000. MITF: a stream flowing for pigment cells. Pigment Cell Res. 13:230–40 [Google Scholar]
  184. Tachibana M, Hara Y, Vyas D, Hodgkinson C, Fex J. et al. 1992. Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation. Mol. Cell. Neurosci. 3:433–45 [Google Scholar]
  185. Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE. et al. 1996. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet. 14:50–54 [Google Scholar]
  186. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP. 1994. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8:174–89 [Google Scholar]
  187. Takebayashi K, Chida K, Tsukamoto I, Morii E, Munakata H. et al. 1996. The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential. Mol. Cell. Biol. 16:1203–11 [Google Scholar]
  188. Takeda K, Takemoto C, Kobayashi I, Watanabe A, Nobukuni Y. et al. 2000. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9:125–32 [Google Scholar]
  189. Takeda K, Yasumoto K, Kawaguchi N, Udono T, Watanabe K. et al. 2002. MitfD, a newly identified isoform, expressed in the retinal pigment epithelium and monocyte-lineage cells affected by Mitf mutations. Biochim. Biophys. Acta 1574:15–23 [Google Scholar]
  190. Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K. et al. 2000. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 275:14013–16 [Google Scholar]
  191. Takemoto CM, Yoon YJ, Fisher DE. 2002. The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. J. Biol. Chem. 277:30244–52 [Google Scholar]
  192. Tassabehji M, Newton VE, Liu XZ, Brady A, Donnai D. et al. 1995. The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 4:2131–37 [Google Scholar]
  193. Tassabehji M, Read AP, Newton VE, Harris R, Balling R. et al. 1992. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355:635–36 [Google Scholar]
  194. Thaung C, West K, Clark BJ, McKie L, Morgan JE. et al. 2002. Novel ENU-induced eye mutations in the mouse: models for human eye disease. Hum. Mol. Genet. 11:755–67 [Google Scholar]
  195. Tomita Y, Miyamura Y, Kono M, Nakamura R, Matsunaga J. 2000. Molecular bases of congenital hypopigmentary disorders in humans and oculocutaneous albinism 1 in Japan. Pigment Cell Res. 13(Suppl. 8):130–34 [Google Scholar]
  196. Tsujimura T, Morii E, Nozaki M, Hashimoto K, Moriyama Y. et al. 1996. Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice. Blood 88:1225–33 [Google Scholar]
  197. Turque N, Denhez F, Martin P, Planque N, Bailly M. et al. 1996. Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO J. 15:3338–50 [Google Scholar]
  198. Udono T, Yasumoto K, Takeda K, Amae S, Watanabe K. et al. 2000. Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. Biochim. Biophys. Acta 1491:205–19 [Google Scholar]
  199. Vachtenheim J, Novotna H. 1999. Expression of genes for microphthalmia isoforms, Pax3 and MSG1, in human melanomas. Cell Mol. Biol. 45:1075–82 [Google Scholar]
  200. Vachtenheim J, Novotna H, Ghanem G. 2001. Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. J. Invest. Dermatol. 117:1505–11 [Google Scholar]
  201. van Es JH, Barker N, Clevers H. 2003. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr. Opin. Genet. Dev. 13:28–33 [Google Scholar]
  202. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. 1993. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–40 [Google Scholar]
  203. Verastegui C, Bertolotti C, Bille K, Abbe P, Ortonne JP, Ballotti R. 2000. TFE3, a transcription factor homologous to microphthalmia, is a potential transcriptional activator of tyrosinase and TyrpI genes. Mol. Endocrinol. 14:449–56 [Google Scholar]
  204. Verastegui C, Bille K, Ortonne JP, Ballotti R. 2000. Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J. Biol. Chem. 275:30757–60 [Google Scholar]
  205. Verger A, Perdomo J, Crossley M. 2003. Modification with SUMO. A role in transcriptional regulation EMBO Rep. 4:137–42 [Google Scholar]
  206. Walker DG. 1975. Spleen cells transmit osteopetrosis in mice. Science 190:785–86 [Google Scholar]
  207. Watanabe A, Takeda K, Ploplis B, Tachibana M. 1998. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat. Genet. 18:283–86 [Google Scholar]
  208. Watanabe K, Takeda K, Yasumoto K, Udono T, Saito H. et al. 2002. Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res. 15:201–11 [Google Scholar]
  209. Weilbaecher KN, Hershey CL, Takemoto CH, Horstmann MA, Hemesath TJ. et al. 1998. Age-resolving osteopetrosis: A rat model implicating microphthalmia and the related transcription factor TFE3. J. Exp. Med. 187:775–85 [Google Scholar]
  210. Weilbaecher KN, Motyckova G, Huber WE, Takemoto CM, Hemesath TJ. et al. 2001. Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol. Cell 8:749–58 [Google Scholar]
  211. West JD, Fisher G, Loutit JF, Marshall MJ, Nisbet NW, Perry VH. 1985. A new allele of microphthalmia induced in the mouse: microphthalmia-defective iris (mi di). Genet. Res. 46:309–24 [Google Scholar]
  212. Weterman MA, van Groningen JJ, den Hartog A, Geurts van Kessel A. 2001. Transformation capacities of the papillary renal cell carcinoma-associated PRCCTFE3 and TFE3PRCC fusion genes. Oncogene 20:1414–24 [Google Scholar]
  213. Weterman MA, van Groningen JJ, Tertoolen L, van Kessel AG. 2001. Impairment of MAD2B-PRCC interaction in mitotic checkpoint defective t(X;1)-positive renal cell carcinomas. Proc. Natl. Acad. Sci. USA 98:13808–13 [Google Scholar]
  214. Weterman MAJ, Wilbrink M, van Kessel AG. 1996. Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Proc. Natl. Acad. Sci. USA 93:15294–98 [Google Scholar]
  215. Weterman MJ, van Groningen JJ, Jansen A, van Kessel AG. 2000. Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins. Oncogene 19:69–74 [Google Scholar]
  216. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL. et al. 2002. Betacatenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J. Cell Biol. 158:1079–87 [Google Scholar]
  217. Wolfe HG. 1962. Mouse News Lett. 26:35
  218. Wolfe HG, Coleman DL. 1964. Mi-spotted: a mutation in the mouse. Genet. Res. Camb. 5:432–40 [Google Scholar]
  219. Wood BC, Miner G. 1969. Mouse News Lett. 40:32
  220. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG. et al. 2000. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14:301–12 [Google Scholar]
  221. Xu W, Gong L, Haddad MM, Bischof O, Campisi J. et al. 2000. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255:135–43 [Google Scholar]
  222. Xu X, Chu AY, Pasha TL, Elder DE, Zhang PJ. 2002. Immunoprofile of MITF, tyrosinase, melan-A, and MAGE-1 in HMB45-negative melanomas. Am. J. Surg. Pathol. 26:82–87 [Google Scholar]
  223. Yajima I, Endo K, Sato S, Toyoda R, Wada H. et al. 2003. Cloning and functional analysis of ascidian Mitf in vivo: insights into the origin of vertebrate pigment cells. Mech. Dev. 120:1489–504 [Google Scholar]
  224. Yajima I, Sato S, Kimura T, Yasumoto K, Shibahara S. et al. 1999. An L1 element intronic insertion in the black-eyed white (Mitfmi-bw) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum. Mol. Genet. 8:1431–41 [Google Scholar]
  225. Yamamura K, Kamada S, Ito S, Nakagawa K, Ichihashi M, Tsujimoto Y. 1996. Accelerated disappearance of melanocytes in bcl-2-deficient mice. Cancer Res. 56:3546–50 [Google Scholar]
  226. Yasumoto K, Amae S, Udono T, Fuse N, Takeda K, Shibahara S. 1998. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Pigment Cell Res. 11:329–36 [Google Scholar]
  227. Yasumoto K, Shibahara S. 1997. Molecular cloning of cDNA encoding a human TFEC isoform, a newly identified transcriptional regulator. Biochim. Biophys. Acta 1353:23–31 [Google Scholar]
  228. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S. 2002. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J. 21:2703–14 [Google Scholar]
  229. Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S. 1994. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14:8058–70 [Google Scholar]
  230. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. 1997. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272:503–9 [Google Scholar]
  231. Yavuzer U, Keenan E, Lowings P, Vachtenheim J, Currie G, Goding CR. 1995. The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10:123–34 [Google Scholar]
  232. Zhao G-Q, Zhao Q, Zhou X, Mattei M-G, DeCrombrugghe B. 1993. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol. 13:4505–12 [Google Scholar]
  233. Zhou ZQ, Hurlin PJ. 2001. The interplay between Mad and Myc in proliferation and differentiation. Trends Cell Biol. 11:S10–14 [Google Scholar]
  234. Zimring DC, Lamoreux ML, Millichamp NJ, Skow LC. 1996. Microphthalmia cloudy-eye (mi(ce)): a new murine allele. J. Hered. 87:334–38 [Google Scholar]
/content/journals/10.1146/annurev.genet.38.072902.092717
Loading
/content/journals/10.1146/annurev.genet.38.072902.092717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error