1932

Abstract

When angiotensin II or AT1 receptor is experimentally inhibited during the perinatal period, either by pharmacological intervention or genetic manipulation, the kidney develops with profound structural abnormalities. Most prominent are hypertrophy of arterial vasculatures and atrophy of the papilla. Although the mechanism by which the vascular hypertrophy occurs remains unknown, study of the atrophic papilla gives us a new clue for understanding the physiological role of angiotensin. Mutant mice completely devoid of AT1 receptor fail to develop the renal pelvis and the ureteral peristaltic movement. Normally, angiotensin and AT1 receptor are transiently up-regulated around the renal outlet at birth. Thus angiotensin II induces the peristaltic machinery during the perinatal period in a timely fashion to accommodate the dramatic increase in urine production that occurs during the transition from intra- to extra-uterine life. Further studies revealed that in adult animals angiotensin augments the peristaltic movement when the urinary tract is partially obstructed, thereby protecting the kidney from hydronephrosis. This newly discovered function of angiotensin to protect kidney architecture at the time of urine outflow obstruction is reminiscent of its similar kidney structure-protecting function that is active during arterial blood flow obstruction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.64.081501.155721
2002-03-01
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/64/1/annurev.physiol.64.081501.155721.html?itemId=/content/journals/10.1146/annurev.physiol.64.081501.155721&mimeType=html&fmt=ahah

Literature Cited

  1. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction.. N. Engl. J. Med. 319:80–86 [Google Scholar]
  2. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, et al. 1992. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction.. Results of the survival and ventricular enlargement trial. The SAVE Investigators N. Engl. J. Med. 327:669–77 [Google Scholar]
  3. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. 1993. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.. The Collaborative Study Group N. Engl. J. Med. 329:1456–62 [Google Scholar]
  4. Chaturvedi N, Sjolie AK, Stephenson JM, Abrahamian H, Keipes M. et al. 1998. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes.. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus Lancet 351:28–31 [Google Scholar]
  5. Heudes D, Michel O, Chevalier J, Scalbert E, Ezan E. et al. 1994. Effect of chronic ANG I-converting enzyme inhibition on aging processes.. I. Kidney structure and function Am. J. Physiol. Regulatory Integrative Comp. Physiol. 266:R1038–R51 [Google Scholar]
  6. Inserra F, Romano L, Ercole L, de Cavanagh EM, Ferder L. 1995. Cardiovascular changes by long-term inhibition of the renin-angiotensin system in aging.. Hypertension 25:437–42 [Google Scholar]
  7. Nightingale SL. 1992. From the Food and Drug Administration.. J. Am. Med. Assoc. 267:2445 [Google Scholar]
  8. Pryde PG, Sedman AB, Nugent CE, Barr M Jr. 1993. Angiotensin-converting enzyme inhibitor fetopathy.. J. Am. Soc. Nephrol. 3:1575–82 [Google Scholar]
  9. Sedman AB, Kershaw DB, Bunchman TE. 1995. Recognition and management of angiotensin converting enzyme inhibitor fetopathy.. Pediatr. Nephrol. 9:382–85 [Google Scholar]
  10. Ewan AP, Larsson L. 1992. Morphologic development of the nephron. In Pediatric Kidney Disease, ed. CM Edelmann Jr 19–48 Boston/Toronto/London: Little, Brown. 2nd ed
  11. Itatani H, Koide T, Okuyama A, Mizutani S, Sonoda T. 1979. Development of the calyceal system in the human fetus.. Invest. Urol. 16:388–94 [Google Scholar]
  12. Nigam SK, Aperia AC, Brenner BM. 1996. Development and maturation of the kidney. In The Kidney, ed. BM Brenner 72–98 Philadelphia/London/Toronto/Montreal/Sydney/Tokyo: Saunders. 5th ed
  13. Baker LA, Gomez RA. 1998. Embryonic development of the ureter and bladder: acquisition of smooth muscle.. J. Urol. 160:545–50 [Google Scholar]
  14. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H. et al. 1995. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation.. J. Clin. Invest. 96:2947–54 [Google Scholar]
  15. Miyazaki Y, Tsuchida S, Nishimura H, Pope JCT, Harris RC. et al. 1998. Angiotensin induces the urinary peristaltic machinery during the perinatal period.. J. Clin. Invest. 102:1489–97 [Google Scholar]
  16. Boylan BJW, Colbourn EP, McCance RA. 1958. Renal function in the foetal and newborn guinea-pig.. J. Physiol. 141:323–31 [Google Scholar]
  17. Rabinowitz R, Peters MT, Vyas S, Campbell S, Nicolaides KH. 1989. Measurement of fetal urine production in normal pregnancy by real-time ultrasonography.. Am. J. Obstet. Gynecol. 161:1264–66 [Google Scholar]
  18. Taylor GM, Peart WS, Porter KA, Zondek LH, Zondek T. 1986. Concentration and molecular forms of active and inactive renin in human fetal kidney, amniotic fluid and adrenal gland: evidence for renin-angiotensin system hyperactivity in 2nd trimester of pregnancy.. J. Hypertens. 4:121–29 [Google Scholar]
  19. Jose PA, Slotkoff LM, Montgomery S, Calcagno PL, Eisner G. 1975. Autoregulation of renal blood flow in the puppy.. Am. J. Physiol. 229:983–88 [Google Scholar]
  20. Ciuffo GM, Viswanathan M, Seltzer AM, Tsutsumi K, Saavedra JM. 1993. Glomerular angiotensin II receptor subtypes during development of rat kidney.. Am. J. Physiol. Renal Physiol. 265:F264–F71 [Google Scholar]
  21. Shanmugam S, Corvol P, Gasc JM. 1994. Ontogeny of the two angiotensin II type 1 receptor subtypes in rats.. Am. J. Physiol. Endocrinol. Metab. 267:E828–E36 [Google Scholar]
  22. Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A. et al. 1995. Developmental expression of renal angiotensin II receptor genes in the mouse.. Kidney Int. 47:140–47 [Google Scholar]
  23. Schutz S, Le Moullec JM, Corvol P, Gasc JM. 1996. Early expression of all the components of the renin-angiotensin system in human development.. Am. J. Pathol. 149:2067–79 [Google Scholar]
  24. Butkus A, Albiston A, Alcorn D, Giles M, McCausland J. et al. 1997. Ontogeny of angiotensin II receptors, types 1 and 2, in ovine mesonephros and metanephros.. Kidney Int. 52:628–36 [Google Scholar]
  25. Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E. et al. 1994. Angiotensinogen-deficient mice with hypotension.. J. Biol. Chem. 269:31334–37 [Google Scholar]
  26. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB. et al. 1995. Genetic control of blood pressure and the angiotensinogen locus.. Proc. Natl. Acad. Sci. USA 92:2735–39 [Google Scholar]
  27. Ray PE, Aguilera G, Kopp JB, Horikoshi S, Klotman PE. 1991. Angiotensin II receptor-mediated proliferation of cultured human fetal mesangial cells.. Kidney Int. 40:764–71 [Google Scholar]
  28. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F. et al. 1996. Nephrogenesis and renovascular development in angiotensinogen-deficient mice.. Lab. Invest. 75:745–53 [Google Scholar]
  29. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR. et al. 1995. Male-female differences in fertility and blood pressure in ACE-deficient mice.. Nature 375:146–48 [Google Scholar]
  30. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE. 1996. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility.. Lab. Invest. 74:953–65 [Google Scholar]
  31. Esther CR, Marino EM, Howard TE, Machaud A, Corvol P. et al. 1997. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice.. J. Clin. Invest. 99:2375–85 [Google Scholar]
  32. Oliverio MI, Kim HS, Ito M, Le T, Audoly L. et al. 1998. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II.. Proc. Natl. Acad. Sci. USA 95:15496–501 [Google Scholar]
  33. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F. et al. 1998. Murine double null zygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen null zygotes.. J. Clin. Invest. 101:755–60 [Google Scholar]
  34. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice.. Nature 377:744–47 [Google Scholar]
  35. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y. et al. 1995. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor.. Nature 377:748–50 [Google Scholar]
  36. Burson JM, Aguilera G, Gross KW, Sigmund CD. 1994. Differential expression of angiotensin receptor 1A and 1B in mouse.. Am. J. Physiol. Endocrinol. Metab. 267:E260–E67 [Google Scholar]
  37. Nishimura H, Matsusaka T, Fogo A, Kon V, Ichikawa I. 1997. A novel in vivo mechanism for angiotensin type 1 receptor regulation.. Kidney Int. 52:345–55 [Google Scholar]
  38. Matsusaka T, Nishimura H, Utsunomiya H, Kakuchi J, Niimura F. et al. 1996. Chimeric mice carrying ‘regional’ targeted deletion of the angiotensin type 1A receptor gene.. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells J. Clin. Invest. 98:1867–77 [Google Scholar]
  39. Oliverio MI, Best CF, Kim HS, Arendshorst WJ, Smithies O, Coffman TM. 1997. Angiotensin II responses in AT1A receptor-deficient mice: a role for AT1B receptors in blood pressure regulation.. Am. J. Physiol. Renal Physiol. 272:F515–F20 [Google Scholar]
  40. Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H. et al. 1994. Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism.. Kidney Int. 45:485–92 [Google Scholar]
  41. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA. 1995. Angiotensin II regulates nephrogenesis and renal vascular development.. Am. J. Physiol. Renal Physiol. 269:F110–F15 [Google Scholar]
  42. Spence SG, Allen HL, Cukierski MA, Manson JM, Robertson RT, Eydelloth RS. 1995. Defining the susceptible period of developmental toxicity for the AT1-selective angiotensin II receptor antagonist losartan in rats.. Teratology 51:367–82 [Google Scholar]
  43. Hashimoto K, Imai K, Yoshimura S, Ohtaki T. 1981. Twelve month studies on the chronic toxicity of captopril in rats.. J. Toxicol. Sci. 6(Suppl.)2:215–46 [Google Scholar]
  44. Matsusaka T, Kon V, Takaya J, Katori H, Chen X. et al. 2000. Dual renin gene targeting by Cre-mediated interchromosomal recombination.. Genomics 64:127–31 [Google Scholar]
  45. Yanai K, Saito T, Kakinuma Y, Kon Y, Hirota K. et al. 2000. Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice.. J. Biol. Chem. 275:5–8 [Google Scholar]
  46. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I. 1999. The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy.. Kidney Int. 55:1683–95 [Google Scholar]
  47. Constantinou CE. 1974. Renal pelvic pacemaker control of ureteral peristaltic rate.. Am. J. Physiol. 226:1413–19 [Google Scholar]
  48. el-Dahr SS, Gee J, Dipp S, Hanss BG, Vari RC, Chao J. 1993. Upregulation of renin-angiotensin system and downregulation of kallikrein in obstructive nephropathy.. Am. J. Physiol. Renal Physiol. 264:F874–F81 [Google Scholar]
  49. Pimentel JL Jr, Martinez-Maldonado M, Wilcox JN, Wang S, Luo C. 1993. Regulation of renin-angiotensin system in unilateral ureteral obstruction.. Kidney Int. 44:390–400 [Google Scholar]
  50. Pimentel JL Jr, Montero A, Wang S, Yosipiv I, el-Dahr S, Martinez-Maldonado M. 1995. Sequential changes in renal expression of renin-angiotensin system genes in acute unilateral ureteral obstruction.. Kidney Int. 48:1247–53 [Google Scholar]
  51. Pimentel JL Jr, Sundell CL, Wang S, Kopp JB, Montero A, Martinez-Maldonado M. 1995. Role of angiotensin II in the expression and regulation of transforming growth factor-beta in obstructive nephropathy.. Kidney Int. 48:1233–46 [Google Scholar]
  52. Paxton WG, Runge M, Horaist C, Cohen C, Alexander RW, Bernstein KE. 1993. Immunohistochemical localization of rat angiotensin II AT1 receptor.. Am. J. Physiol. Renal Physiol. 264:F989–F95 [Google Scholar]
  53. Gasc JM, Shanmugam S, Sibony M, Corvol P. 1994. Tissue-specific expression of type 1 angiotensin II receptor subtypes.. An in situ hybridization study Hypertension 24:531–37 [Google Scholar]
  54. Fujinaka H, Miyazaki Y, Matsusaka T, Yoshida H, Fogo AB. et al. 2000. Salutary role for angiotensin in partial urinary tract obstruction.. Kidney Int. 58:2018–27 [Google Scholar]
  55. Constantinou CE, Hrynczuk JR. 1976. Urodynamics of the upper urinary tract.. Invest. Urol. 14:233–40 [Google Scholar]
  56. Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S. 1994. Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney.. Kidney Int. 45:1637–47 [Google Scholar]
  57. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S. 1995. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction.. Kidney Int. 47:1285–94 [Google Scholar]
  58. Morrissey JJ, Klahr S. 1997. Rapid communication. Enalapril decreases nuclear factor kappa B activation in the kidney with ureteral obstruction.. Kidney Int. 52:926–33 [Google Scholar]
/content/journals/10.1146/annurev.physiol.64.081501.155721
Loading
/content/journals/10.1146/annurev.physiol.64.081501.155721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error