1932

Abstract

The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-040320-103615
2022-06-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-040320-103615.html?itemId=/content/journals/10.1146/annurev-biochem-040320-103615&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Holstein TW, Watanabe H, Özbek S. 2011. Signaling pathways and axis formation in the lower metazoa. Curr. Top. Dev. Biol. 97:137–77
    [Google Scholar]
  2. 2.
    Loh KM, van Amerongen R, Nusse R. 2016. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 38:6643–55
    [Google Scholar]
  3. 3.
    Nusse R, Varmus HE. 1982. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:199–109
    [Google Scholar]
  4. 4.
    Liu C, Li Y, Semenov M, Han C, Baeg G-H et al. 2002. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:6837–47
    [Google Scholar]
  5. 5.
    van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H. 2002. Wnt signaling controls the phosphorylation status of β-catenin. J. Biol. Chem. 277:2017901–5
    [Google Scholar]
  6. 6.
    Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y et al. 1996. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:6588225–30
    [Google Scholar]
  7. 7.
    Cong F, Schweizer L, Varmus H. 2004. Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131:205103–15
    [Google Scholar]
  8. 8.
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. 2000. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:6803535–38
    [Google Scholar]
  9. 9.
    Tamai K, Semenov M, Kato Y, Spokony R, Liu C et al. 2000. LDL-receptor-related proteins in Wnt signal transduction. Nature 407:6803530–35
    [Google Scholar]
  10. 10.
    Hernandez AR, Klein AM, Kirschner MW. 2012. Kinetic responses of β-catenin specify the sites of Wnt control. Science 338:61121337–40
    [Google Scholar]
  11. 11.
    Adamska M, Larroux C, Adamski M, Green K, Lovas E et al. 2010. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica: Wnt pathway components in Amphimedon queenslandica. Evol. Dev. 12:5494–518
    [Google Scholar]
  12. 12.
    Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC et al. 2000. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:6801186–89
    [Google Scholar]
  13. 13.
    Holstein TW. 2012. The evolution of the Wnt pathway. Cold Spring Harb. Perspect. Biol. 4:7a007922
    [Google Scholar]
  14. 14.
    Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:7207955–60
    [Google Scholar]
  15. 15.
    Nusse R. 2001. An ancient cluster of Wnt paralogues. Trends Genet 17:8443
    [Google Scholar]
  16. 16.
    Grimson MJ, Coates JC, Reynolds JP, Shipman M, Blanton RL, Harwood AJ. 2000. Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism. Nature 408:6813727–31
    [Google Scholar]
  17. 17.
    Harwood AJ 2008. Dictyostelium development: a prototypic Wnt pathway?. Wnt Signaling (Methods in Molecular Biology, Vol. 469 E Vincan 21–32 Totowa, NJ: Humana Press
    [Google Scholar]
  18. 18.
    Plyte SE, O'Donovan E, Woodgett JR, Harwood AJ. 1999. Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126:2325–33
    [Google Scholar]
  19. 19.
    Prabhu Y, Eichinger L. 2006. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell Biol. 85:9–10937–46
    [Google Scholar]
  20. 20.
    Richter DJ, Fozouni P, Eisen MB, King N 2018. Gene family innovation, conservation and loss on the animal stem lineage. eLife 7:e34226
    [Google Scholar]
  21. 21.
    Cadigan KM, Peifer M. 2009. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb. Perspect. Biol. 1:2a002881
    [Google Scholar]
  22. 22.
    McMahon AP, Moon RT. 1989. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58:61075–84
    [Google Scholar]
  23. 23.
    Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ et al. 1997. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:1181–92
    [Google Scholar]
  24. 24.
    Zylkiewicz E, Sokol SY, Hoppler S 2014. Wnt signaling in early vertebrate development: from fertilization to gastrulation. Wnt Signaling in Development and Disease S Hoppler, RT Moon 251–66 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  25. 25.
    Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. 1995. Lack of β-catenin affects mouse development at gastrulation. Development 121:113529–37
    [Google Scholar]
  26. 26.
    Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. 2000. Requirement for β-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148:567–78
    [Google Scholar]
  27. 27.
    Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. 1999. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22:4361–65
    [Google Scholar]
  28. 28.
    Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol 20:781–810
    [Google Scholar]
  29. 29.
    Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. 2003. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:143175–85
    [Google Scholar]
  30. 30.
    McMahon AP, Bradley A. 1990. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:61073–85
    [Google Scholar]
  31. 31.
    Ruiz-Herguido C, Guiu J, D'Altri T, Inglés-Esteve J, Dzierzak E et al. 2012. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209:81457–68
    [Google Scholar]
  32. 32.
    Thomas KR, Capecchi MR. 1990. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:6287847–50
    [Google Scholar]
  33. 33.
    Yamaguchi TP, Bradley A, McMahon AP, Jones S. 1999. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:61211–23
    [Google Scholar]
  34. 34.
    Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:125–36
    [Google Scholar]
  35. 35.
    Korinek V, Barker N, Moerer P, van Donselaar E, Huls G et al. 1998. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19:4379–83
    [Google Scholar]
  36. 36.
    Lim X, Tan SH, Koh WLC, Chau RMW, Yan KS et al. 2013. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342:61631226–30
    [Google Scholar]
  37. 37.
    Plaks V, Brenot A, Lawson DA, Linnemann JR, Van Kappel EC et al. 2013. Lgr5 expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep 3:170–78
    [Google Scholar]
  38. 38.
    van Amerongen R, Bowman AN, Nusse R. 2012. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11:3387–400
    [Google Scholar]
  39. 39.
    Ankawa R, Goldberger N, Yosefzon Y, Koren E, Yusupova M et al. 2021. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev. Cell 56:131900–16.e5
    [Google Scholar]
  40. 40.
    Huh JR, Guo M, Hay BA. 2004. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr. Biol. 14:141262–66
    [Google Scholar]
  41. 41.
    Pérez-Garijo A, Martín FA, Morata G. 2004. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:225591–98
    [Google Scholar]
  42. 42.
    Ryoo HD, Gorenc T, Steller H. 2004. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7:4491–501
    [Google Scholar]
  43. 43.
    Tan SH, Barker N. 2018. Wnt signaling in adult epithelial stem cells and cancer. Prog. Mol. Biol. Transl. Sci. 153:21–79
    [Google Scholar]
  44. 44.
    Cancer Genome Atlas Netw 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:7407330–37
    [Google Scholar]
  45. 45.
    Zhan T, Rindtorff N, Boutros M. 2017. Wnt signaling in cancer. Oncogene 36:111461–73
    [Google Scholar]
  46. 46.
    Kinzler K, Nilbert M, Su L, Vogelstein B, Bryan T et al. 1991. Identification of FAP locus genes from chromosome 5q21. Science 253:5020661–65
    [Google Scholar]
  47. 47.
    Kinzler KW, Vogelstein B. 1996. Lessons from hereditary colorectal cancer. Cell 87:2159–70
    [Google Scholar]
  48. 48.
    Lammi L, Arte S, Somer M, Järvinen H, Lahermo P et al. 2004. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74:51043–50
    [Google Scholar]
  49. 49.
    Liu W, Dong X, Mai M, Seelan RS, Taniguchi K et al. 2000. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nat. Genet. 26:2146–47
    [Google Scholar]
  50. 50.
    Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N et al. 2000. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24:3245–50
    [Google Scholar]
  51. 51.
    Kim S, Jeong S. 2019. Mutation hotspots in the β-catenin gene: lessons from the human cancer genome databases. Mol. Cells 42:18–16
    [Google Scholar]
  52. 52.
    Morin PJ. 1997. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275:53071787–90
    [Google Scholar]
  53. 53.
    Rubinfeld B. 1997. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275:53071790–92
    [Google Scholar]
  54. 54.
    Albrecht LV, Tejeda-Muñoz N, De Robertis EM. 2021. Cell biology of canonical Wnt signaling. Annu. Rev. Cell Dev. Biol. 37:369–89
    [Google Scholar]
  55. 55.
    Clevers H, Loh KM, Nusse R. 2014. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:62051248012
    [Google Scholar]
  56. 56.
    Grainger S, Willert K. 2018. Mechanisms of Wnt signaling and control. WIREs Syst. Biol. Med. 10:5e1422
    [Google Scholar]
  57. 57.
    MacDonald BT, Tamai K, He X. 2009. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:19–26
    [Google Scholar]
  58. 58.
    Nusse R, Clevers H. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:6985–99
    [Google Scholar]
  59. 59.
    Reya T, Clevers H. 2005. Wnt signalling in stem cells and cancer. Nature 434:7035843–50
    [Google Scholar]
  60. 60.
    Ring A, Kim Y-M, Kahn M. 2014. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev. Rep. 10:4512–25
    [Google Scholar]
  61. 61.
    Steinhart Z, Angers S. 2018. Wnt signaling in development and tissue homeostasis. Development 145:11dev146589
    [Google Scholar]
  62. 62.
    Wiese KE, Nusse R, van Amerongen R. 2018. Wnt signalling: conquering complexity. Development 145:12dev165902
    [Google Scholar]
  63. 63.
    Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC. 2011. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. PNAS 108:3112752–57
    [Google Scholar]
  64. 64.
    Biechele S, Cox BJ, Rossant J. 2011. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355:2275–85
    [Google Scholar]
  65. 65.
    Coombs GS, Yu J, Canning CA, Veltri CA, Covey TM et al. 2010. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123:193357–67
    [Google Scholar]
  66. 66.
    Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N 1996. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev 10:243116–28
    [Google Scholar]
  67. 67.
    Takada R, Satomi Y, Kurata T, Ueno N, Norioka S et al. 2006. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11:6791–801
    [Google Scholar]
  68. 68.
    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL et al. 2003. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:6938448–52
    [Google Scholar]
  69. 69.
    Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. 2006. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125:3509–22
    [Google Scholar]
  70. 70.
    Bartscherer K, Pelte N, Ingelfinger D, Boutros M. 2006. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:3523–33
    [Google Scholar]
  71. 71.
    Yang P-T, Lorenowicz MJ, Silhankova M, Coudreuse DYM, Betist MC, Korswagen HC. 2008. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14:1140–47
    [Google Scholar]
  72. 72.
    Chai G, Szenker-Ravi E, Chung C, Li Z, Wang L et al. 2021. A human pleiotropic multiorgan condition caused by deficient Wnt secretion. N. Engl. J. Med. 385:141292–301
    [Google Scholar]
  73. 73.
    Gao X, Hannoush RN. 2014. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10:161–68
    [Google Scholar]
  74. 74.
    Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. 2012. Structural basis of Wnt recognition by Frizzled. Science 337:609059–64
    [Google Scholar]
  75. 75.
    Nygaard R, Yu J, Kim J, Ross DR, Parisi G et al. 2021. Structural basis of WLS/Evi-mediated Wnt transport and secretion. Cell 184:1194–206.e14
    [Google Scholar]
  76. 76.
    Bazan JF, Janda CY, Garcia KC. 2012. Structural architecture and functional evolution of Wnts. Dev. Cell 23:2227–32
    [Google Scholar]
  77. 77.
    de Mendoza A, Sebé-Pedrós A, Ruiz-Trillo I. 2014. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol. Evol. 6:3606–19
    [Google Scholar]
  78. 78.
    Krishnan A, Almén MS, Fredriksson R, Schiöth HB. 2012. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLOS ONE 7:1e29817
    [Google Scholar]
  79. 79.
    Yan R, Qian H, Lukmantara I, Gao M, Du X et al. 2018. Human SEIPIN binds anionic phospholipids. Dev. Cell 47:2248–56.e4
    [Google Scholar]
  80. 80.
    Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X et al. 2016. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538:7625350–55
    [Google Scholar]
  81. 81.
    Chen P, Tao L, Wang T, Zhang J, He A et al. 2018. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360:6389664–69
    [Google Scholar]
  82. 82.
    Bhamra I, Adams N, Armer R, Bingham M, McKeever H et al. 2017. Novel porcupine (PORCN) inhibitor RXC004: evaluation in models of RNF43 loss of function cancers. J. Clin. Oncol. 35:Suppl. 15e14094
    [Google Scholar]
  83. 83.
    Jiang X, Hao H-X, Growney JD, Woolfenden S, Bottiglio C et al. 2013. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. PNAS 110:3112649–54
    [Google Scholar]
  84. 84.
    Li C, Cao J, Zhang N, Tu M, Xu F et al. 2018. Identification of RSPO2 fusion mutations and target therapy using a porcupine inhibitor. Sci. Rep. 8:114244
    [Google Scholar]
  85. 85.
    Liu J, Pan S, Hsieh MH, Ng N, Sun F et al. 2013. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. PNAS 110:5020224–29
    [Google Scholar]
  86. 86.
    Madan B, Ke Z, Harmston N, Ho SY, Frois AO et al. 2016. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35:172197–207
    [Google Scholar]
  87. 87.
    Zhong Z, Virshup DM. 2020. Wnt signaling and drug resistance in cancer. Mol. Pharmacol. 97:272–89
    [Google Scholar]
  88. 88.
    Harmston N, Lim JYS, Arqués O, Petretto E, Virshup DM, Madan B. 2021. Widespread repression of gene expression in cancer by a Wnt/β-catenin/MAPK pathway. Cancer Res 81:2464–75
    [Google Scholar]
  89. 89.
    Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N et al. 2021. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol. Med. 13:4e13349
    [Google Scholar]
  90. 90.
    Couso J, Bate M, Martinez-Arias A. 1993. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science 259:5094484–89
    [Google Scholar]
  91. 91.
    Capurro MI, Xiang Y-Y, Lobe C, Filmus J. 2005. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65:146245–54
    [Google Scholar]
  92. 92.
    Franch-Marro X. 2005. Glypicans shunt the Wingless signal between local signalling and further transport. Development 132:4659–66
    [Google Scholar]
  93. 93.
    Hufnagel L, Kreuger J, Cohen SM, Shraiman BI. 2006. On the role of glypicans in the process of morphogen gradient formation. Dev. Biol. 300:2512–22
    [Google Scholar]
  94. 94.
    Li N, Wei L, Liu X, Bai H, Ye Y et al. 2019. A Frizzled-like cysteine-rich domain in Glypican-3 mediates Wnt binding and regulates hepatocellular carcinoma tumor growth in mice. Hepatology 70:41231–45
    [Google Scholar]
  95. 95.
    Lin X, Perrimon N. 1999. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400:6741281–84
    [Google Scholar]
  96. 96.
    Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W et al. 1999. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400:6741276–80
    [Google Scholar]
  97. 97.
    Yan D, Wu Y, Feng Y, Lin S-C, Lin X 2009. The core protein of glypican Dally-like determines its biphasic activity in Wingless morphogen signaling. Dev. Cell 17:4470–81
    [Google Scholar]
  98. 98.
    McGough IJ, Vecchia L, Bishop B, Malinauskas T, Beckett K et al. 2020. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585:782385–90
    [Google Scholar]
  99. 99.
    Farin HF, Jordens I, Mosa MH, Basak O, Korving J et al. 2016. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530:7590340–43
    [Google Scholar]
  100. 100.
    Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B et al. 2018. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 7:e36953
    [Google Scholar]
  101. 101.
    Moti N, Yu J, Boncompain G, Perez F, Virshup DM. 2019. Wnt traffic from endoplasmic reticulum to filopodia. PLOS ONE 14:2e0212711
    [Google Scholar]
  102. 102.
    Stanganello E, Hagemann AIH, Mattes B, Sinner C, Meyen D et al. 2015. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6:15846
    [Google Scholar]
  103. 103.
    Brunt L, Greicius G, Rogers S, Evans BD, Virshup DM et al. 2021. Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling. Nat. Commun. 12:12058
    [Google Scholar]
  104. 104.
    Huang H, Kornberg TB 2015. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 4:e06114
    [Google Scholar]
  105. 105.
    Junyent S, Garcin CL, Szczerkowski JLA, Trieu T-J, Reeves J, Habib SJ. 2020. Specialized cytonemes induce self-organization of stem cells. PNAS 117:137236–44
    [Google Scholar]
  106. 106.
    Junyent S, Reeves JC, Szczerkowski JL, Garcin CL, Trieu T-J et al. 2021. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 10:e59791
    [Google Scholar]
  107. 107.
    González-Méndez L, Seijo-Barandiarán I, Guerrero I 2017. Cytoneme-mediated cell-cell contacts for Hedgehog reception. eLife 6:e24045
    [Google Scholar]
  108. 108.
    Hu B, Balaraju AK, Rodriguez JJ, Gao Y, Nguyen NT et al. 2021. Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. Dev. Biol. 220:12e202009082
    [Google Scholar]
  109. 109.
    Langton PF, Kakugawa S, Vincent J-P. 2016. Making, exporting, and modulating Wnts. Trends Cell Biol 26:10756–65
    [Google Scholar]
  110. 110.
    Maurice MM, Korswagen HC 2014. Wnt signal production, secretion, and diffusion. Wnt Signaling in Development and Disease S Hoppler, RT Moon 3–14 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  111. 111.
    Routledge D, Scholpp S. 2019. Mechanisms of intercellular Wnt transport. Development 146:10dev176073
    [Google Scholar]
  112. 112.
    Stanganello E, Scholpp S. 2016. Role of cytonemes in Wnt transport. J. Cell Sci. 129:4665–72
    [Google Scholar]
  113. 113.
    Takada S, Fujimori S, Shinozuka T, Takada R, Mii Y. 2017. Differences in the secretion and transport of Wnt proteins. J. Biochem. 161:11–7
    [Google Scholar]
  114. 114.
    Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J et al. 2010. Reconstitution of a Frizzled8·Wnt3a·LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285:129172–79
    [Google Scholar]
  115. 115.
    Chen S, Bubeck D, MacDonald BT, Liang W-X, Mao J-H et al. 2011. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev. Cell 21:5848–61
    [Google Scholar]
  116. 116.
    KS Carmon, Loose DS. 2010. Development of a bioassay for detection of Wnt-binding affinities for individual frizzled receptors. Anal. Biochem. 401:2288–94
    [Google Scholar]
  117. 117.
    Dijksterhuis JP, Baljinnyam B, Stanger K, Sercan HO, Ji Y et al. 2015. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem. 290:116789–98
    [Google Scholar]
  118. 118.
    Hsieh J-C, Rattner A, Smallwood PM, Nathans J. 1999. Biochemical characterization of Wnt-Frizzled interactions using a soluble, biologically active vertebrate Wnt protein. PNAS 96:73546–51
    [Google Scholar]
  119. 119.
    Voloshanenko O, Gmach P, Winter J, Kranz D, Boutros M. 2017. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J 31:114832–44
    [Google Scholar]
  120. 120.
    Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N et al. 2017. Wnt proteins synergize to activate β-catenin signaling. J. Cell Sci. 130:91532–44
    [Google Scholar]
  121. 121.
    Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X et al. 2017. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 23:160–68
    [Google Scholar]
  122. 122.
    Cho C, Smallwood PM, Nathans J. 2017. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:51056–73.e5
    [Google Scholar]
  123. 123.
    Posokhova E, Shukla A, Seaman S, Volate S, Hilton MB et al. 2015. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Rep 10:2123–30
    [Google Scholar]
  124. 124.
    Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y et al. 2015. Tip cell–specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4:e06489
    [Google Scholar]
  125. 125.
    Zhou Y, Nathans J. 2014. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical Wnt signaling. Dev. Cell 31:2248–56
    [Google Scholar]
  126. 126.
    Cho C, Wang Y, Smallwood PM, Williams J, Nathans J 2019. Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. eLife 8:e47300
    [Google Scholar]
  127. 127.
    Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P et al. 2018. A molecular mechanism for Wnt ligand-specific signaling. Science 361:6403eaat1178
    [Google Scholar]
  128. 128.
    Vallon M, Yuki K, Nguyen TD, Chang J, Yuan J et al. 2018. A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability. Cell Rep 25:2339–49.e9
    [Google Scholar]
  129. 129.
    Grainger S, Richter J, Palazón RE, Pouget C, Lonquich B et al. 2016. Wnt9a is required for the aortic amplification of nascent hematopoietic stem cells. Cell Rep 17:61595–606
    [Google Scholar]
  130. 130.
    Grainger S, Nguyen N, Richter J, Setayesh J, Lonquich B et al. 2019. EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nat. Cell Biol. 21:6721–30
    [Google Scholar]
  131. 131.
    Chu ML-H, Ahn VE, Choi H-J, Daniels DL, Nusse R, Weis WI. 2013. Structural studies of Wnts and identification of an LRP6 binding site. Structure 21:71235–42
    [Google Scholar]
  132. 132.
    Hirai H, Matoba K, Mihara E, Arimori T, Takagi J. 2019. Crystal structure of a mammalian Wnt-frizzled complex. Nat. Struct. Mol. Biol. 26:5372–79
    [Google Scholar]
  133. 133.
    Nile AH, Mukund S, Stanger K, Wang W, Hannoush RN. 2017. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. PNAS 114:164147–52
    [Google Scholar]
  134. 134.
    Dann CE, Hsieh J-C, Rattner A, Sharma D, Nathans J, Leahy DJ. 2001. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:684286–90
    [Google Scholar]
  135. 135.
    Albrecht LV, Tejeda-Muñoz N, Bui MH, Cicchetto AC, Di Biagio D et al. 2020. GSK3 inhibits macropinocytosis and lysosomal activity through the Wnt destruction complex machinery. Cell Rep 32:4107973
    [Google Scholar]
  136. 136.
    Bandmann V, Mirsanaye AS, Schäfer J, Thiel G, Holstein T, Mikosch-Wersching M. 2019. Membrane capacitance recordings resolve dynamics and complexity of receptor-mediated endocytosis in Wnt signalling. Sci. Rep. 9:112999
    [Google Scholar]
  137. 137.
    Redelman-Sidi G, Binyamin A, Gaeta I, Palm W, Thompson CB et al. 2018. The canonical Wnt pathway drives macropinocytosis in cancer. Cancer Res 78:164658–70
    [Google Scholar]
  138. 138.
    Tejeda-Muñoz N, Albrecht LV, Bui MH, De Robertis EM. 2019. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. PNAS 116:2110402–11
    [Google Scholar]
  139. 139.
    Agajanian MJ, Walker MP, Axtman AD, Ruela-de-Sousa RR, Serafin DS et al. 2019. WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop. Cell Rep 26:179–93.e8
    [Google Scholar]
  140. 140.
    Blitzer JT, Nusse R. 2006. A critical role for endocytosis in Wnt signaling. BMC Cell Biol 7:28
    [Google Scholar]
  141. 141.
    Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM et al. 2014. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J. Cell Sci 127:Part 183970–82
    [Google Scholar]
  142. 142.
    Kim I, Pan W, Jones SA, Zhang Y, Zhuang X, Wu D. 2013. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. J. Cell Biol. 200:4419–28
    [Google Scholar]
  143. 143.
    Rim EY, Kinney LK, Nusse R. 2020. β-Catenin-mediated Wnt signal transduction proceeds through an endocytosis-independent mechanism. Mol. Biol. Cell 31:131425–36
    [Google Scholar]
  144. 144.
    Yamamoto H, Komekado H, Kikuchi A. 2006. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev. Cell 11:2213–23
    [Google Scholar]
  145. 145.
    Holmen SL, Robertson SA, Zylstra CR, Williams BO. 2005. Wnt-independent activation of β-catenin mediated by a Dkk1-Fz5 fusion protein. Biochem. Biophys. Res. Commun. 328:2533–39
    [Google Scholar]
  146. 146.
    Janda CY, Dang LT, You C, Chang J, de Lau W et al. 2017. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545:7653234–37
    [Google Scholar]
  147. 147.
    Miao Y, Ha A, de Lau W, Yuki K, Santos AJM et al. 2020. Next-generation surrogate Wnts support organoid growth and deconvolute frizzled pleiotropy in vivo. Cell Stem Cell 27:5840–51.e6
    [Google Scholar]
  148. 148.
    Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA et al. 2017. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 545:7653238–42
    [Google Scholar]
  149. 149.
    Dang LT, Miao Y, Ha A, Yuki K, Park K et al. 2019. Receptor subtype discrimination using extensive shape complementary designed interfaces. Nat. Struct. Mol. Biol. 26:6407–14
    [Google Scholar]
  150. 150.
    Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM et al. 2020. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. eLife 9:e58464
    [Google Scholar]
  151. 151.
    Chen H, Lu C, Ouyang B, Zhang H, Huang Z et al. 2020. Development of potent, selective surrogate WNT molecules and their application in defining Frizzled requirements. Cell Chem. Biol. 27:5598–609.e4
    [Google Scholar]
  152. 152.
    Hansen S, Hannoush RN. 2020. It takes two to regenerate: optimizing custom Wnt surrogates. Cell Chem. Biol. 27:5473–75
    [Google Scholar]
  153. 153.
    Tao Y, Mis M, Blazer L, Ustav M, Steinhart Z et al. 2019. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. eLife 8:e46134
    [Google Scholar]
  154. 154.
    Chidiac R, Abedin Md, Macleod G, Yang A, Thibeault PE et al. 2021. A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Mol. Med. 13:7e13977
    [Google Scholar]
  155. 155.
    Gumber D, Do M, Suresh Kumar N, Sonavane PR, Wu CCN et al. 2020. Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells. eLife 9:e63060
    [Google Scholar]
  156. 156.
    Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. 2001. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3:7683–86
    [Google Scholar]
  157. 157.
    Li X, Zhang Y, Kang H, Liu W, Liu P et al. 2005. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280:2019883–87
    [Google Scholar]
  158. 158.
    Mao B, Wu W, Li Y, Hoppe D, Stannek P et al. 2001. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:6835321–25
    [Google Scholar]
  159. 159.
    Semënov MV, Tamai K, Brott BK, Kühl M, Sokol S, He X. 2001. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11:12951–61
    [Google Scholar]
  160. 160.
    Semënov M, Tamai K, He X. 2005. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280:2926770–75
    [Google Scholar]
  161. 161.
    Ettenberg SA, Charlat O, Daley MP, Liu S, Vincent KJ et al. 2010. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies. PNAS 107:3515473–78
    [Google Scholar]
  162. 162.
    Fenderico N, van Scherpenzeel RC, Goldflam M, Proverbio D, Jordens I et al. 2019. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat. Commun. 10:1365
    [Google Scholar]
  163. 163.
    Gong Y, Bourhis E, Chiu C, Stawicki S, DeAlmeida VI et al. 2010. Wnt isoform–specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLOS ONE 5:9e12682
    [Google Scholar]
  164. 164.
    Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C et al. 2012. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. PNAS 109:2911717–22
    [Google Scholar]
  165. 165.
    Jackson H, Granger D, Jones G, Anderson L, Friel S et al. 2016. Novel bispecific domain antibody to LRP6 inhibits Wnt and R-spondin ligand-induced Wnt signaling and tumor growth. Mol. Cancer Res. 14:9859–68
    [Google Scholar]
  166. 166.
    Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N et al. 2018. A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. mAbs 10:81157–67
    [Google Scholar]
  167. 167.
    Do M, Wu CCN, Sonavane PR, Juarez EF, Adams SR et al. 2022. A FZD7-specific antibody-drug conjugate induces ovarian tumor regression in preclinical models. Mol. Cancer Ther 21:1113–24
    [Google Scholar]
  168. 168.
    Finch PW, He X, Kelley MJ, Uren A, Schaudies RP et al. 1997. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. PNAS 94:136770–75
    [Google Scholar]
  169. 169.
    Gerlitz O. 2002. Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev 16:91055–59
    [Google Scholar]
  170. 170.
    Hsieh J-C, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM et al. 1999. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:6726431–36
    [Google Scholar]
  171. 171.
    Leyns L, Bouwmeester T, Kim S-H, Piccolo S, De Robertis EM. 1997. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:6747–56
    [Google Scholar]
  172. 172.
    Rattner A, Hsieh J-C, Smallwood PM, Gilbert DJ, Copeland NG et al. 1997. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. PNAS 94:72859–63
    [Google Scholar]
  173. 173.
    Salic AN, Kroll KL, Evans LM, Kirschner MW. 1997. Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124:234739–48
    [Google Scholar]
  174. 174.
    Kakugawa S, Langton PF, Zebisch M, Howell SA, Chang T-H et al. 2015. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519:7542187–92
    [Google Scholar]
  175. 175.
    Zhang X, Cheong S-M, Amado NG, Reis AH, MacDonald BT et al. 2015. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32:6719–30
    [Google Scholar]
  176. 176.
    Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W 2004. R-spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis. Dev. Cell 7:4525–34
    [Google Scholar]
  177. 177.
    de Lau W, Peng WC, Gros P, Clevers H. 2014. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28:4305–16
    [Google Scholar]
  178. 178.
    Hao H-X, Xie Y, Zhang Y, Charlat O, Oster E et al. 2012. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:7397195–200
    [Google Scholar]
  179. 179.
    Koo B-K, Spit M, Jordens I, Low TY, Stange DE et al. 2012. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:7413665–69
    [Google Scholar]
  180. 180.
    Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M et al. 2007. The intestinal Wnt/TCF signature. Gastroenterology 132:2628–32
    [Google Scholar]
  181. 181.
    Carmon KS, Gong X, Lin Q, Thomas A, Liu Q 2011. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. PNAS 108:2811452–57
    [Google Scholar]
  182. 182.
    Chen P-H, Chen X, Lin Z, Fang D, He X 2013. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27:121345–50
    [Google Scholar]
  183. 183.
    de Lau W, Barker N, Low TY, Koo B-K, Li VSW et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:7360293–97
    [Google Scholar]
  184. 184.
    Glinka A, Dolde C, Kirsch N, Huang Y, Kazanskaya O et al. 2011. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 12:101055–61
    [Google Scholar]
  185. 185.
    Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M et al. 2013. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4:12787
    [Google Scholar]
  186. 186.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:71651003–7
    [Google Scholar]
  187. 187.
    Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ et al. 2008. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40:111291–99
    [Google Scholar]
  188. 188.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH et al. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:59711385–89
    [Google Scholar]
  189. 189.
    Merenda A, Fenderico N, Maurice MM 2020. Wnt signaling in 3D: recent advances in the applications of intestinal organoids. Trends Cell Biol 30:160–73
    [Google Scholar]
  190. 190.
    Assié G, Letouzé E, Fassnacht M, Jouinot A, Luscap W et al. 2014. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46:6607–12
    [Google Scholar]
  191. 191.
    Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF et al. 2011. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. PNAS 108:5221188–93
    [Google Scholar]
  192. 192.
    Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE et al. 2012. Recurrent R-spondin fusions in colon cancer. Nature 488:7413660–64
    [Google Scholar]
  193. 193.
    Koo B-K, van Es JH, van den Born M, Clevers H. 2015. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. PNAS 112:247548–50
    [Google Scholar]
  194. 194.
    Storm EE, Durinck S, de Sousa e Melo F, Tremayne J, Kljavin N et al. 2016. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 529:758497–100
    [Google Scholar]
  195. 195.
    Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV et al. 2020. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. eLife 9:e54469
    [Google Scholar]
  196. 196.
    Lebensohn AM, Rohatgi R 2018. R-spondins can potentiate WNT signaling without LGRs. eLife 7:e33126
    [Google Scholar]
  197. 197.
    Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M et al. 2018. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 557:7706564–69
    [Google Scholar]
  198. 198.
    Lee H, Seidl C, Sun R, Glinka A, Niehrs C. 2020. R-spondins are BMP receptor antagonists in Xenopus early embryonic development. Nat. Commun. 11:15570
    [Google Scholar]
  199. 199.
    Jiang J, Struhl G. 1998. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:6666493–96
    [Google Scholar]
  200. 200.
    Polakis P. 2012. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4:5a008052
    [Google Scholar]
  201. 201.
    Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. 2011. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. PNAS 108:51937–42
    [Google Scholar]
  202. 202.
    Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. 2021. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol. Cell 81:163246–61.e11
    [Google Scholar]
  203. 203.
    Faux MC, Coates JL, Catimel B, Cody S, Clayton AHA et al. 2008. Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta. Oncogene 27:445808–20
    [Google Scholar]
  204. 204.
    Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM et al. 2018. Supramolecular assembly of the β-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLOS Genet 14:4e1007339
    [Google Scholar]
  205. 205.
    Schaefer KN, Peifer M. 2019. Wnt/β-catenin signaling regulation and a role for biomolecular condensates. Dev. Cell 48:4429–44
    [Google Scholar]
  206. 206.
    Thorvaldsen TE, Pedersen NM, Wenzel EM, Schultz SW, Brech A et al. 2015. Structure, dynamics, and functionality of tankyrase inhibitor–induced degradasomes. Mol. Cancer Res 13:111487–501
    [Google Scholar]
  207. 207.
    Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148:114–31
    [Google Scholar]
  208. 208.
    Hedgepeth CM, Conrad LJ, Zhang J, Huang H-C, Lee VMY, Klein PS. 1997. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185:182–91
    [Google Scholar]
  209. 209.
    Klein PS, Melton DA. 1996. A molecular mechanism for the effect of lithium on development. PNAS 93:168455–59
    [Google Scholar]
  210. 210.
    McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N et al. 2005. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:81571–83
    [Google Scholar]
  211. 211.
    Ng SS, Mahmoudi T, Danenberg E, Bejaoui I, de Lau W et al. 2009. Phosphatidylinositol 3-kinase signaling does not activate the Wnt cascade. J. Biol. Chem. 284:5135308–13
    [Google Scholar]
  212. 212.
    Acebron SP, Karaulanov E, Berger BS, Huang Y-L, Niehrs C. 2014. Mitotic Wnt signaling promotes protein stabilization and regulates cell size. Mol. Cell 54:4663–74
    [Google Scholar]
  213. 213.
    Madan B, Harmston N, Nallan G, Montoya A, Faull P et al. 2018. Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. J. Clin. Investig. 128:125620–33
    [Google Scholar]
  214. 214.
    Taelman VF, Dobrowolski R, Plouhinec J-L, Fuentealba LC, Vorwald PP et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:71136–48
    [Google Scholar]
  215. 215.
    Davidson G, Wu W, Shen J, Bilic J, Fenger U et al. 2005. Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:7069867–72
    [Google Scholar]
  216. 216.
    Piao S, Lee S-H, Kim H, Yum S, Stamos JL et al. 2008. Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling. PLOS ONE 3:12e4046
    [Google Scholar]
  217. 217.
    Zeng X, Tamai K, Doble B, Li S, Huang H et al. 2005. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:7069873–77
    [Google Scholar]
  218. 218.
    Stamos JL, Chu ML-H, Enos MD, Shah N, Weis WI 2014. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife 3:e01998
    [Google Scholar]
  219. 219.
    Wu G, Huang H, Abreu JG, He X. 2009. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLOS ONE 4:3e4926
    [Google Scholar]
  220. 220.
    Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR et al. 2012. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149:61245–56
    [Google Scholar]
  221. 221.
    Gammons MV, Rutherford TJ, Steinhart Z, Angers S, Bienz M. 2016. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J. Cell Sci. 129:203892–902
    [Google Scholar]
  222. 222.
    Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M. 2016. Wnt signalosome assembly by DEP domain swapping of Dishevelled. Mol. Cell 64:192–104
    [Google Scholar]
  223. 223.
    Pan WJ, Pang SZ, Huang T, Guo HY, Wu D, Li L. 2004. Characterization of function of three domains in Dishevelled-1: DEP domain is responsible for membrane translocation of Dishevelled-1. Cell Res 14:4324–30
    [Google Scholar]
  224. 224.
    Tauriello DVF, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T et al. 2012. Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. PNAS 109:14E812–20
    [Google Scholar]
  225. 225.
    Ma W, Chen M, Kang H, Steinhart Z, Angers S et al. 2020. Single-molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation. PNAS 117:2816690–701
    [Google Scholar]
  226. 226.
    Habib SJ, Chen B-C, Tsai F-C, Anastassiadis K, Meyer T et al. 2013. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339:61261445–48
    [Google Scholar]
  227. 227.
    Kim S-E, Huang H, Zhao M, Zhang X, Zhang A et al. 2013. Wnt stabilization of β-catenin reveals principles for morphogen receptor–scaffold assemblies. Science 340:6134867–70
    [Google Scholar]
  228. 228.
    Parker TW, Neufeld KL. 2020. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci. Rep. 10:12957
    [Google Scholar]
  229. 229.
    Kishida S, Yamamoto H, Hino S-I, Ikeda S, Kishida M, Kikuchi A. 1999. DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol 19:64414–22
    [Google Scholar]
  230. 230.
    Rothbächer U, Laurent MN, Deardorff MA, Klein PS, Cho KWY, Fraser SE. 2000. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J 19:51010–22
    [Google Scholar]
  231. 231.
    Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A et al. 2007. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14:6484–92
    [Google Scholar]
  232. 232.
    Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. 1998. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12:162610–22
    [Google Scholar]
  233. 233.
    Schwarz-Romond T. 2005. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118:225269–77
    [Google Scholar]
  234. 234.
    Kan W, Enos MD, Korkmazhan E, Muennich S, Chen D-H et al. 2020. Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction. eLife 9:e55015
    [Google Scholar]
  235. 235.
    Cliffe A, Hamada F, Bienz M. 2003. A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signaling. Curr. Biol. 13:11960–66
    [Google Scholar]
  236. 236.
    Yamanishi K, Fiedler M, Terawaki S, Higuchi Y, Bienz M, Shibata N. 2019. A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to β-catenin. Sci. Signal. 12:611eaaw5505
    [Google Scholar]
  237. 237.
    Zeng W, Wharton KA, Mack JA, Wang K, Gadbaw M et al. 2000. naked cuticle encodes an inducible antagonist of Wnt signalling. Nature 403:6771789–95
    [Google Scholar]
  238. 238.
    Gammons MV, Renko M, Flack JE, Mieszczanek J, Bienz M 2020. Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin. eLife 9:e59879
    [Google Scholar]
  239. 239.
    van Dop M, Fiedler M, Mutte S, de Keijzer J, Olijslager L et al. 2020. DIX domain polymerization drives assembly of plant cell polarity complexes. Cell 180:3427–39.e12
    [Google Scholar]
  240. 240.
    Yoshida S, van der Schuren A, van Dop M, van Galen L, Saiga S et al. 2019. A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat. Plants 5:2160–66
    [Google Scholar]
  241. 241.
    Boutros M, Paricio N, Strutt DI, Mlodzik M. 1998. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94:1109–18
    [Google Scholar]
  242. 242.
    Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D et al. 1996. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:6592638–42
    [Google Scholar]
  243. 243.
    Cadigan KM, Waterman ML. 2012. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4:11a007906
    [Google Scholar]
  244. 244.
    Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S et al. 1996. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86:3391–99
    [Google Scholar]
  245. 245.
    Valenta T, Hausmann G, Basler K. 2012. The many faces and functions of β-catenin. EMBO J 31:122714–36
    [Google Scholar]
  246. 246.
    Brantjes H. 2001. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29:71410–19
    [Google Scholar]
  247. 247.
    Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA et al. 1998. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:6702604–8
    [Google Scholar]
  248. 248.
    Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H et al. 1998. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:6702608–12
    [Google Scholar]
  249. 249.
    Ramakrishnan A-B, Cadigan KM. 2017. Wnt target genes and where to find them. F1000Res 6:746
    [Google Scholar]
  250. 250.
    van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. 1991. Identification and cloning of TCF-1, a T lymphocyte–specific transcription factor containing a sequence-specific HMG box. EMBO J 10:1123–32
    [Google Scholar]
  251. 251.
    van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J et al. 1997. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:6789–99
    [Google Scholar]
  252. 252.
    de Roo Jolanda JD, Breukel C, Chhatta AR, Linssen MM, Vloemans SA et al. 2017. Axin2-mTurquoise2: a novel reporter mouse model for the detection of canonical Wnt signalling. Genesis 55:10e23068
    [Google Scholar]
  253. 253.
    Jho E, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22:41172–83
    [Google Scholar]
  254. 254.
    Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T et al. 2002. Negative feedback loop of Wnt signaling through upregulation of Conductin/Axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22:41184–93
    [Google Scholar]
  255. 255.
    Moosdijk AAA, Grift YBC, Man SMA, Zeeman AL, Amerongen R. 2020. A novel Axin2 knock-in mouse model for visualization and lineage tracing of WNT/CTNNB1 responsive cells. Genesis 58:9e23387
    [Google Scholar]
  256. 256.
    Anthony CC, Robbins DJ, Ahmed Y, Lee E 2020. Nuclear regulation of Wnt/β-catenin signaling: It's a complex situation. Genes 11:8886
    [Google Scholar]
  257. 257.
    Söderholm S, Cantù C. 2020. The WNT/β-catenin dependent transcription: a tissue-specific business. Wiley Interdiscip. Rev. Syst. Biol. Med 13:3e1511
    [Google Scholar]
  258. 258.
    Ramakrishnan A-B, Chen L, Burby PE, Cadigan KM. 2021. Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucl. Acids Res. 49:158625–41
    [Google Scholar]
  259. 259.
    Kramps T, Peter O, Brunner E, Nellen D, Froesch B et al. 2002. Wnt/Wingless signaling requires BCL9/Legless-mediated recruitment of Pygopus to the nuclear β-catenin–TCF complex. Cell 109:147–60
    [Google Scholar]
  260. 260.
    van Tienen LM, Mieszczanek J, Fiedler M, Rutherford TJ, Bienz M 2017. Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9. eLife 6:e20882
    [Google Scholar]
  261. 261.
    Cantù C, Felker A, Zimmerli D, Prummel KD, Cabello EM et al. 2018. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev 32:21–221443–58
    [Google Scholar]
  262. 262.
    Parker DS, Jemison J, Cadigan KM. 2002. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:112565–76
    [Google Scholar]
  263. 263.
    Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. 2002. A new nuclear component of the Wnt signalling pathway. Nat. Cell Biol. 4:5367–73
    [Google Scholar]
  264. 264.
    Zimmerli D, Borrelli C, Jauregi-Miguel A, Söderholm S, Brütsch S et al. 2020. TBX3 acts as tissue-specific component of the Wnt/β-catenin transcriptional complex. eLife 9:e58123
    [Google Scholar]
  265. 265.
    Cui S, Li L, Yu RT, Downes M, Evans RM et al. 2019. β-Catenin is essential for differentiation of primary myoblasts via cooperation with MyoD and α-catenin. Development 146:6dev167080
    [Google Scholar]
  266. 266.
    Kim C-H, Neiswender H, Baik EJ, Xiong WC, Mei L. 2008. β-Catenin interacts with MyoD and regulates its transcription activity. Mol. Cell Biol. 28:92941–51
    [Google Scholar]
  267. 267.
    Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M et al. 2020. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife 9:e58029
    [Google Scholar]
  268. 268.
    Barker N. 2001. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J 20:174935–43
    [Google Scholar]
  269. 269.
    Hecht A. 2000. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J 19:81839–50
    [Google Scholar]
  270. 270.
    Takemaru K-I, Moon RT. 2000. The transcriptional coactivator Cbp interacts with β-catenin to activate gene expression. J. Cell Biol. 149:2249–54
    [Google Scholar]
  271. 271.
    Jackstadt R, Hodder MC, Sansom OJ. 2020. WNT and β-catenin in cancer: genes and therapy. Annu. Rev. Cancer Biol. 4:177–96
    [Google Scholar]
  272. 272.
    Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ et al. 2019. A cytosine deaminase for programmable single-base RNA editing. Science 365:6451382–86
    [Google Scholar]
  273. 273.
    Bahmanyar S, Kaplan DD, DeLuca JG, Giddings TH, O'Toole ET et al. 2008. β-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 22:191–105
    [Google Scholar]
  274. 274.
    Bufe A, García del Arco A, Hennecke M, de Jaime-Soguero A, Ostermaier M et al. 2021. Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. PNAS 118:34e2108145118
    [Google Scholar]
  275. 275.
    Huber AH, Weis WI. 2001. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105:3391–402
    [Google Scholar]
  276. 276.
    Kaplan DD, Meigs TE, Kelly P, Casey PJ 2004. Identification of a role for β-catenin in the establishment of a bipolar mitotic spindle. J. Biol. Chem. 279:1210829–32
    [Google Scholar]
  277. 277.
    Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM. 1992. The vertebrate adhesive junction proteins β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J. Cell Biol. 118:3681–91
    [Google Scholar]
  278. 278.
    Goentoro L, Kirschner MW. 2009. Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling. Mol. Cell 36:5872–84
    [Google Scholar]
  279. 279.
    Ambrosi G, Voloshanenko O, Eckert AF, Kranz D, Nienhaus GU, Boutros M 2022. Allele-specific endogenous tagging and quantitative analysis of β-catenin in colon cancer cells. eLife 11:e64498
    [Google Scholar]
  280. 280.
    de Man SM, Zwanenburg G, van der Wal T, Hink MA, van Amerongen R 2021. Quantitative live-cell imaging and computational modeling shed new light on endogenous WNT/CTNNB1 signaling dynamics. eLife 10:e66440
    [Google Scholar]
  281. 281.
    Kafri P, Hasenson SE, Kanter I, Sheinberger J, Kinor N et al. 2016. Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife 5:e16748
    [Google Scholar]
  282. 282.
    Tan C, Gardiner BS, Hirokawa Y, Smith DW, Burgess AW. 2014. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells. BMC Syst. Biol. 8:144
    [Google Scholar]
  283. 283.
    Krieghoff E. 2006. Nucleo-cytoplasmic distribution of β-catenin is regulated by retention. J. Cell Sci. 119:71453–63
    [Google Scholar]
  284. 284.
    Griffin JN, del Viso F, Duncan AR, Robson A, Hwang W et al. 2018. RAPGEF5 regulates nuclear translocation of β-catenin. Dev. Cell 44:2248–60.e4
    [Google Scholar]
  285. 285.
    Mis M, O'Brien S, Steinhart Z, Lin S, Hart T et al. 2020. IPO11 mediates βcatenin nuclear import in a subset of colorectal cancers. J. Cell Biol. 219:2e201903017
    [Google Scholar]
  286. 286.
    Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M. 2018. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat. Commun. 9:15304
    [Google Scholar]
  287. 287.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36:9880–87
    [Google Scholar]
  288. 288.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH et al. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12:151–54
    [Google Scholar]
  289. 289.
    Roux KJ, Kim DI, Raida M, Burke B. 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:6801–10
    [Google Scholar]
  290. 290.
    Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ et al. 2016. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11:3456–75
    [Google Scholar]
  291. 291.
    Lobingier BT, Hüttenhain R, Eichel K, Miller KB, Ting AY et al. 2017. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:2350–60.e12
    [Google Scholar]
  292. 292.
    Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV et al. 2020. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci. Rep. 10:121555
    [Google Scholar]
  293. 293.
    Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND et al. 2020. Split-TurboID enables contact-dependent proximity labeling in cells. PNAS 117:2212143–54
    [Google Scholar]
  294. 294.
    Han Y, Branon TC, Martell JD, Boassa D, Shechner D et al. 2019. Directed evolution of split APEX2 peroxidase. ACS Chem. Biol. 14:4619–35
    [Google Scholar]
  295. 295.
    Romei MG, Boxer SG. 2019. Split green fluorescent proteins: scope, limitations, and outlook. Annu. Rev. Biophys. 48:19–44
    [Google Scholar]
  296. 296.
    White CW, Caspar B, Vanyai HK, Pfleger KDG, Hill SJ. 2020. CRISPR-mediated protein tagging with nanoluciferase to investigate native chemokine receptor function and conformational changes. Cell Chem. Biol. 27:5499–510.e7
    [Google Scholar]
  297. 297.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:6557871–76
    [Google Scholar]
  298. 298.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  299. 299.
    Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. 2013. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10:3249–52
    [Google Scholar]
  300. 300.
    Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. 2020. Engineered illumination devices for optogenetic control of cellular signaling dynamics. Cell Rep 31:10107737
    [Google Scholar]
  301. 301.
    Prole DL, Taylor CW. 2019. A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. BMC Biol 17:141
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-040320-103615
Loading
/content/journals/10.1146/annurev-biochem-040320-103615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error