1932

Abstract

Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide–MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101420-125021
2021-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101420-125021.html?itemId=/content/journals/10.1146/annurev-chembioeng-101420-125021&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S. 1978. A complete immunoglobulin gene is created by somatic recombination. Cell 15:11–14
    [Google Scholar]
  2. 2. 
    Alt FW, Rosenberg N, Casanova RJ, Thomas E, Baltimore D 1982. Immunoglobulin heavy-chain expression and class switching in a murine leukaemia cell line. Nature 296:5855325–31
    [Google Scholar]
  3. 3. 
    Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 302:5909575–81
    [Google Scholar]
  4. 4. 
    Murphy K, Weaver C. 2016. Janeway's Immunobiology New York: Garland Sci, 9th ed..
  5. 5. 
    Weigert MG, Cesari IM, Yonkovich SJ, Cohn M. 1970. Variability in the lambda light chain sequences of mouse antibody. Nature 228:52761045–47
    [Google Scholar]
  6. 6. 
    Jacob J, Kelsoe G, Rajewsky K, Weiss U. 1991. Intraclonal generation of antibody mutants in germinal centres. Nature 354:6352389–92
    [Google Scholar]
  7. 7. 
    Liu YJ, Malisan F, de Bouteiller O, Guret C, Lebecque S et al. 1996. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4:3241–50
    [Google Scholar]
  8. 8. 
    Mesin L, Ersching J, Victora GD 2016. Germinal center B cell dynamics. Immunity 45:3471–82
    [Google Scholar]
  9. 9. 
    Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR. 2014. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32:2158–68
    [Google Scholar]
  10. 10. 
    Weinstein JA, Jiang N, White RA 3rd, Fisher DS, Quake SR 2009. High-throughput sequencing of the zebrafish antibody repertoire. Science 324:5928807–10
    [Google Scholar]
  11. 11. 
    Greiff V, Menzel U, Miho E, Weber C, Riedel R et al. 2017. Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Rep 19:71467–78
    [Google Scholar]
  12. 12. 
    Briney B, Inderbitzin A, Joyce C, Burton DR 2019. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566:7744393–97
    [Google Scholar]
  13. 13. 
    Jiang N, He J, Weinstein JA, Penland L, Sasaki S et al. 2013. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5:171171ra19
    [Google Scholar]
  14. 14. 
    Laserson U, Vigneault F, Gadala-Maria D, Yaari G, Uduman M et al. 2014. High-resolution antibody dynamics of vaccine-induced immune responses. PNAS 111:134928–33
    [Google Scholar]
  15. 15. 
    Lavinder JJ, Wine Y, Giesecke C, Ippolito GC, Horton AP et al. 2014. Identification and characterization of the constituent human serum antibodies elicited by vaccination. PNAS 111:62259–64
    [Google Scholar]
  16. 16. 
    Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:749855–62
    [Google Scholar]
  17. 17. 
    Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH et al. 2010. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28:9965–69
    [Google Scholar]
  18. 18. 
    DeKosky BJ, Kojima T, Rodin A, Charab W, Ippolito GC et al. 2015. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21:86–91
    [Google Scholar]
  19. 19. 
    Setliff I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE et al. 2019. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179:71636–46.e15
    [Google Scholar]
  20. 20. 
    Wang B, DeKosky BJ, Timm MR, Lee J, Normandin E et al. 2018. Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nat. Biotechnol. 36:2152–55
    [Google Scholar]
  21. 21. 
    Gilman MSA, Castellanos CA, Chen M, Ngwuta JO, Goodwin E et al. 2016. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1:6eaaj1879
    [Google Scholar]
  22. 22. 
    Gérard A, Woolfe A, Mottet G, Reichen M, Castrillon C et al. 2020. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38:6715–21
    [Google Scholar]
  23. 23. 
    Jiang X, Wang S, Zhou C, Wu J, Jiao Y et al. 2020. Comprehensive TCR repertoire analysis of CD4+ T-cell subsets in rheumatoid arthritis. J. Autoimmun. 109:102432
    [Google Scholar]
  24. 24. 
    Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P et al. 2020. CD4+ T follicular helper cells in human tonsils and blood are clonally convergent but divergent from non-Tfh CD4+ cells. Cell Rep 30:1137–52.e5
    [Google Scholar]
  25. 25. 
    Ritvo P-G, Saadawi A, Barennes P, Quiniou V, Chaara W et al. 2018. High-resolution repertoire analysis reveals a major bystander activation of Tfh and Tfr cells. PNAS 115:389604–9
    [Google Scholar]
  26. 26. 
    Maceiras AR, Almeida SCP, Mariotti-Ferrandiz E, Chaara W, Jebbawi F et al. 2017. T follicular helper and T follicular regulatory cells have different TCR specificity. Nat. Commun. 8:15067
    [Google Scholar]
  27. 27. 
    Welten SPM, Yermanos A, Baumann NS, Wagen F, Oetiker N et al. 2020. Tcf1+ cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat. Commun. 11:2295
    [Google Scholar]
  28. 28. 
    Yermanos A, Sandu I, Pedrioli A, Borsa M, Wagen F et al. 2020. Profiling virus-specific Tcf1+ T cell repertoires during acute and chronic viral infection. Front. Immunol. 11:986
    [Google Scholar]
  29. 29. 
    Woodsworth DJ, Castellarin M, Holt RA. 2013. Sequence analysis of T-cell repertoires in health and disease. Genome Med 5:1098
    [Google Scholar]
  30. 30. 
    Kirsch IR, Watanabe R, O'Malley JT, Williamson DW, Scott L-L et al. 2015. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci. Transl. Med. 7:308308ra158
    [Google Scholar]
  31. 31. 
    Thomas S, Mohammed F, Reijmers RM, Woolston A, Stauss T et al. 2019. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat. Commun. 10:4451
    [Google Scholar]
  32. 32. 
    Guo X-ZJ, Dash P, Calverley M, Tomchuck S, Dallas MH, Thomas PG. 2016. Rapid cloning, expression, and functional characterization of paired αβ and γδ T-cell receptor chains from single-cell analysis. Mol. Ther. Methods Clin. Dev. 3:15054
    [Google Scholar]
  33. 33. 
    Rubelt F, Busse CE, Bukhari SAC, Bürckert J-P, Mariotti-Ferrandiz E et al. 2017. Adaptive immune receptor repertoire community recommendations for sharing immune-repertoire sequencing data. Nat. Immunol. 18:1274–78
    [Google Scholar]
  34. 34. 
    Christley S, Aguiar A, Blanck G, Breden F, Bukhari SAC et al. 2020. The ADC API: a web API for the programmatic query of the AIRR Data Commons. Front. Big Data 3:22
    [Google Scholar]
  35. 35. 
    Corrie BD, Marthandan N, Zimonja B, Jaglale J, Zhou Y et al. 2018. iReceptor: a platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol. Rev. 284:124–41
    [Google Scholar]
  36. 36. 
    Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. 2018. Observed Antibody Space: a resource for data mining next-generation sequencing of antibody repertoires. J. Immunol. 201:82502–9
    [Google Scholar]
  37. 37. 
    Leem J, de Oliveira SHP, Krawczyk K, Deane CM. 2018. STCRDab: the Structural T-Cell Receptor Database. Nucleic Acids Res 46:D1D406–12
    [Google Scholar]
  38. 38. 
    Christley S, Scarborough W, Salinas E, Rounds WH, Toby IT et al. 2018. VDJServer: a cloud-based analysis portal and data commons for immune repertoire sequences and rearrangements. Front. Immunol. 9:976
    [Google Scholar]
  39. 39. 
    Zhang W, Wang L, Liu K, Wei X, Yang K et al. 2020. PIRD: Pan Immune Repertoire Database. Bioinformatics 36:3897–903
    [Google Scholar]
  40. 40. 
    Lima WC, Gasteiger E, Marcatili P, Duek P, Bairoch A, Cosson P. 2020. The ABCD database: a repository for chemically defined antibodies. Nucleic Acids Res 48:D1D261–64
    [Google Scholar]
  41. 41. 
    Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC et al. 2018. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 46:D1D419–27
    [Google Scholar]
  42. 42. 
    Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C et al. 2020. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res 48:D1D1057–62
    [Google Scholar]
  43. 43. 
    Matsumura M, Fremont DH, Peterson PA, Wilson IA. 1992. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:5072927–34
    [Google Scholar]
  44. 44. 
    Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ et al. 1992. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:6389764–68
    [Google Scholar]
  45. 45. 
    Eisen HN, Hou XH, Shen C, Wang K, Tanguturi VK et al. 2012. Promiscuous binding of extracellular peptides to cell surface class I MHC protein. PNAS 109:124580–85
    [Google Scholar]
  46. 46. 
    Joglekar AV, Li G. 2020. T cell antigen discovery. Nat. Methods. https://doi.org/10.1038/s41592-020-0867-z
    [Crossref] [Google Scholar]
  47. 47. 
    Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S et al. 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47:D1D339–43
    [Google Scholar]
  48. 48. 
    Bzdok D, Altman N, Krzywinski M. 2018. Statistics versus machine learning. Nat. Methods 15:4233–34
    [Google Scholar]
  49. 49. 
    Murphy KP. 2012. Machine Learning: A Probabilistic Perspective Cambridge, MA: MIT Press
  50. 50. 
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  51. 51. 
    Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
  52. 52. 
    Wang M, Tai C, E W, Wei L 2018. DeFine: Deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants. Nucleic Acids Res 46:11e69
    [Google Scholar]
  53. 53. 
    Cheng S, Guo M, Wang C, Liu X, Liu Y, Wu X. 2016. MiRTDL: a deep learning approach for miRNA target prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 13:61161–69
    [Google Scholar]
  54. 54. 
    Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. 2019. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 16:121315–22
    [Google Scholar]
  55. 55. 
    Angermueller C, Pärnamaa T, Parts L, Stegle O. 2016. Deep learning for computational biology. Mol. Syst. Biol. 12:7878
    [Google Scholar]
  56. 56. 
    Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12:10931–34
    [Google Scholar]
  57. 57. 
    Alipanahi B, Delong A, Weirauch MT, Frey BJ. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33:8831–38
    [Google Scholar]
  58. 58. 
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2020. Improved protein structure prediction using potentials from deep learning. Nature 577:7792706–10
    [Google Scholar]
  59. 59. 
    Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA et al. 2019. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37:91038–40
    [Google Scholar]
  60. 60. 
    Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A et al. 2020. A deep learning approach to antibiotic discovery. Cell 180:4688–702.e13
    [Google Scholar]
  61. 61. 
    Tarca AL, Carey VJ, Chen X-W, Romero R, Drăghici S. 2007. Machine learning and its applications to biology. PLOS Comput. Biol. 3:6e116
    [Google Scholar]
  62. 62. 
    Eraslan G, Avsec Ž, Gagneur J, Theis FJ. 2019. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20:7389–403
    [Google Scholar]
  63. 63. 
    van Engelen JE, Hoos HH. 2020. A survey on semi-supervised learning. Mach. Learn. 109:2373–440
    [Google Scholar]
  64. 64. 
    Jones DT. 2019. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol. 20:11659–60
    [Google Scholar]
  65. 65. 
    Bishop CM. 1995. Neural Networks for Pattern Recognition New York: Oxford Univ. Press
  66. 66. 
    Leslie C, Eskin E, Noble WS. 2001. The spectrum kernel: a string kernel for SVM protein classification. Pac. Symp. Biocomput. 2002:564–75
    [Google Scholar]
  67. 67. 
    Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. 2008. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:Database issueD202–5
    [Google Scholar]
  68. 68. 
    Atchley WR, Zhao J, Fernandes AD, Drüke T 2005. Solving the protein sequence metric problem. PNAS 102:186395–400
    [Google Scholar]
  69. 69. 
    Altschul SF. 1991. Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 219:3555–65
    [Google Scholar]
  70. 70. 
    Henikoff S, Henikoff JG 1992. Amino acid substitution matrices from protein blocks. PNAS 89:2210915–19
    [Google Scholar]
  71. 71. 
    Rives A, Meier J, Sercu T, Goyal S, Lin Z et al. 2020. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences Work. Pap .
  72. 72. 
    Yang KK, Wu Z, Bedbrook CN, Arnold FH. 2018. Learned protein embeddings for machine learning. Bioinformatics 34:234138
    [Google Scholar]
  73. 73. 
    Asgari E, Mofrad MRK. 2015. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLOS ONE 10:11e0141287
    [Google Scholar]
  74. 74. 
    ElAbd H, Bromberg Y, Hoarfrost A, Lenz T, Franke A, Wendorff M. 2020. Amino acid encoding for deep learning applications. BMC Bioinform 21:235
    [Google Scholar]
  75. 75. 
    Raimondi D, Orlando G, Vranken WF, Moreau Y. 2019. Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis. Sci. Rep. 9:16932
    [Google Scholar]
  76. 76. 
    Graves J, Byerly J, Priego E, Makkapati N, Parish SV et al. 2020. A review of deep learning methods for antibodies. Antibodies 9:212
    [Google Scholar]
  77. 77. 
    Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S et al. 2017. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547:766189–93
    [Google Scholar]
  78. 78. 
    Glanville J, Huang H, Nau A, Hatton O, Wagar LE et al. 2017. Identifying specificity groups in the T cell receptor repertoire. Nature 547:766194–98
    [Google Scholar]
  79. 79. 
    Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. 2020. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat. Biotechnol. 38:1194–202
    [Google Scholar]
  80. 80. 
    Zhang H, Liu L, Zhang J, Chen J, Ye J et al. 2020. Investigation of antigen-specific T-cell receptor clusters in human cancers. Clin. Cancer Res. 26:61359–71
    [Google Scholar]
  81. 81. 
    Meysman P, De Neuter N, Gielis S, Bui Thi D, Ogunjimi B, Laukens K. 2019. On the viability of unsupervised T-cell receptor sequence clustering for epitope preference. Bioinformatics 35:91461–68
    [Google Scholar]
  82. 82. 
    Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S et al. 2016. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34:101037–45
    [Google Scholar]
  83. 83. 
    Miho E, Roškar R, Greiff V, Reddy ST. 2019. Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nat. Commun. 10:1321
    [Google Scholar]
  84. 84. 
    Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB et al. 2019. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLOS Biol 17:6e3000314
    [Google Scholar]
  85. 85. 
    Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK et al. 2017. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49:5659–65
    [Google Scholar]
  86. 86. 
    Greiff V, Weber CR, Palme J, Bodenhofer U, Miho E et al. 2017. Learning the high-dimensional immunogenomic features that predict public and private antibody repertoires. J. Immunol. 199:82985–97
    [Google Scholar]
  87. 87. 
    Ostmeyer J, Christley S, Rounds WH, Toby I, Greenberg BM et al. 2017. Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioinform 18:401
    [Google Scholar]
  88. 88. 
    Tomic A, Tomic I, Rosenberg-Hasson Y, Dekker CL, Maecker HT, Davis MM. 2019. SIMON, an automated machine learning system, reveals immune signatures of influenza vaccine responses. J. Immunol. 203:3749–59
    [Google Scholar]
  89. 89. 
    Konishi H, Komura D, Katoh H, Atsumi S, Koda H et al. 2019. Capturing the differences between humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine learning. BMC Bioinform 20:267
    [Google Scholar]
  90. 90. 
    Bashford-Rogers RJM, Bergamaschi L, McKinney EF, Pombal DC, Mescia F et al. 2019. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574:7776122–26
    [Google Scholar]
  91. 91. 
    Ostmeyer J, Christley S, Toby IT, Cowell LG. 2019. Biophysicochemical motifs in T-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer Res 79:71671–80
    [Google Scholar]
  92. 92. 
    Sidhom J-W, Larman HB, Ross-MacDonald P, Wind-Rotolo M, Pardoll DM, Baras AS. 2019. DeepTCR: a deep learning framework for understanding T-cell receptor sequence signatures within complex T-cell repertoires Work. Pap .
  93. 93. 
    Widrich M, Schäfl B, Pavlović M, Ramsauer H, Gruber L et al. 2020. Modern Hopfield networks and attention for immune repertoire classification Work. Pap .
  94. 94. 
    Brown AJ, Snapkov I, Akbar R, Pavlović M, Miho E et al. 2019. Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Mol. Syst. Des. Eng. 4:4701–36
    [Google Scholar]
  95. 95. 
    Marcou Q, Mora T, Walczak AM. 2018. High-throughput immune repertoire analysis with IGoR. Nat. Commun. 9:561
    [Google Scholar]
  96. 96. 
    Olson BJ, Moghimi P, Schramm CA, Obraztsova A, Ralph D et al. 2019. sumrep: a summary statistic framework for immune receptor repertoire comparison and model validation. Front. Immunol. 10:2533
    [Google Scholar]
  97. 97. 
    Weber CR, Akbar R, Yermanos A, Pavlović M, Snapkov I et al. 2020. immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking. Bioinformatics 36:113594–96
    [Google Scholar]
  98. 98. 
    Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S et al. 2019. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief. Bioinform. 21:51549–67
    [Google Scholar]
  99. 99. 
    Akbar R, Robert PA, Pavlović M, Jeliazkov JR. 2019. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. bioRxiv 759498. https://doi.org/10.1101/759498
    [Crossref]
  100. 100. 
    Younger D, Berger S, Baker D, Klavins E 2017. High-throughput characterization of protein-protein interactions by reprogramming yeast mating. PNAS 114:4612166–71
    [Google Scholar]
  101. 101. 
    Croote D, Darmanis S, Nadeau KC, Quake SR. 2018. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. Science 362:64201306–9
    [Google Scholar]
  102. 102. 
    Setliff I, McDonnell WJ, Raju N, Bombardi RG, Murji AA et al. 2018. Multi-donor longitudinal antibody repertoire sequencing reveals the existence of public antibody clonotypes in HIV-1 infection. Cell Host Microbe 23:6845–54.e6
    [Google Scholar]
  103. 103. 
    De Neuter N, Bittremieux W, Beirnaert C, Cuypers B, Mrzic A et al. 2018. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics 70:3159–68
    [Google Scholar]
  104. 104. 
    Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B et al. 2019. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front. Immunol. 10:2820
    [Google Scholar]
  105. 105. 
    Asti L, Uguzzoni G, Marcatili P, Pagnani A. 2016. Maximum-entropy models of sequenced immune repertoires predict antigen-antibody affinity. PLOS Comput. Biol. 12:4e1004870
    [Google Scholar]
  106. 106. 
    Friedensohn S, Neumeier D, Khan TA, Csepregi L, Parola C et al. 2020. Convergent selection in antibody repertoires is revealed by deep learning. Work. Pap .
    [Google Scholar]
  107. 107. 
    Sormanni P, Aprile FA, Vendruscolo M. 2018. Third generation antibody discovery methods: in silico rational design. Chem. Soc. Rev. 47:249137–57
    [Google Scholar]
  108. 108. 
    Chowdhury R, Allan MF, Maranas CD. 2018. OptMAVEn-2.0: de novo design of variable antibody regions against targeted antigen epitopes. Antibodies 7:323
    [Google Scholar]
  109. 109. 
    Pantazes RJ, Maranas CD. 2010. OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng. Des. Sel. 23:11849–58
    [Google Scholar]
  110. 110. 
    Lapidoth GD, Baran D, Pszolla GM, Norn C, Alon A et al. 2015. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83:81385–406
    [Google Scholar]
  111. 111. 
    Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner BD, Hu X et al. 2018. RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLOS Comput. Biol. 14:4e1006112
    [Google Scholar]
  112. 112. 
    Nimrod G, Fischman S, Austin M, Herman A, Keyes F et al. 2018. Computational design of epitope-specific functional antibodies. Cell Rep 25:82121–31.e5
    [Google Scholar]
  113. 113. 
    Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O et al. 2017. Principles for computational design of binding antibodies. PNAS 114:4110900–5
    [Google Scholar]
  114. 114. 
    Myung Y, Pires DEV, Ascher DB. 2020. mmCSM-AB: guiding rational antibody engineering through multiple point mutations. Nucleic Acids Res 48:W1W125–31
    [Google Scholar]
  115. 115. 
    Fowler DM, Fields S. 2014. Deep mutational scanning: a new style of protein science. Nat. Methods 11:8801–7
    [Google Scholar]
  116. 116. 
    Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP et al. 2019. Inferring protein 3D structure from deep mutation scans. Nat. Genet. 51:71170–76
    [Google Scholar]
  117. 117. 
    Riesselman AJ, Ingraham JB, Marks DS. 2018. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15:10816–22
    [Google Scholar]
  118. 118. 
    Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner Bet al 2021. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng https://doi.org/10.1038/s41551-021-00699-9
    [Crossref] [Google Scholar]
  119. 119. 
    Liu G, Zeng H, Mueller J, Carter B, Wang Z et al. 2020. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics 36:72126–33
    [Google Scholar]
  120. 120. 
    Obrezanova O, Arnell A, de la Cuesta RG, Berthelot ME, Gallagher TRA et al. 2015. Aggregation risk prediction for antibodies and its application to biotherapeutic development. mAbs 7:2352–63
    [Google Scholar]
  121. 121. 
    Jain T, Boland T, Lilov A, Burnina I, Brown M et al. 2017. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 33:233758–66
    [Google Scholar]
  122. 122. 
    Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J et al. 2019. Five computational developability guidelines for therapeutic antibody profiling. PNAS 116:104025–30
    [Google Scholar]
  123. 123. 
    Clavero-Álvarez A, Di Mambro T, Perez-Gaviro S, Magnani M, Bruscolini P. 2018. Humanization of antibodies using a statistical inference approach. Sci. Rep. 8:14820
    [Google Scholar]
  124. 124. 
    Wollacott AM, Xue C, Qin Q, Hua J, Bohnuud T et al. 2019. Quantifying the nativeness of antibody sequences using long short-term memory networks. Protein Eng. Des. Sel. 32:7347–54
    [Google Scholar]
  125. 125. 
    Amimeur T, Shaver JM, Ketchem RR, Taylor JA. 2020. Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv 2020.04.12.024844. https://doi.org/10.1101/2020.04.12.024844
    [Crossref] [Google Scholar]
  126. 126. 
    Mei S, Li F, Leier A, Marquez-Lago TT, Giam K et al. 2020. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief. Bioinform. 21:41119–35
    [Google Scholar]
  127. 127. 
    Nielsen M, Andreatta M, Peters B, Buus S. 2020. Immunoinformatics: predicting peptide-MHC binding. Annu. Rev. Biomed. Data Sci. 3:191–215
    [Google Scholar]
  128. 128. 
    Nielsen M, Lundegaard C, Lund O, Keşmir C. 2005. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:1–233–41
    [Google Scholar]
  129. 129. 
    Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C et al. 2005. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol. Life Sci. 62:91025–37
    [Google Scholar]
  130. 130. 
    Stranzl T, Larsen MV, Lundegaard C, Nielsen M. 2010. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62:6357–68
    [Google Scholar]
  131. 131. 
    Schneidman-Duhovny D, Khuri N, Dong GQ, Winter MB, Shifrut E et al. 2018. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLOS ONE 13:11e0206654
    [Google Scholar]
  132. 132. 
    Yewdell JW, Bennink JR. 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17:51–88
    [Google Scholar]
  133. 133. 
    Garstka MA, Fish A, Celie PHN, Joosten RP, Janssen GMC et al. 2015. The first step of peptide selection in antigen presentation by MHC class I molecules. PNAS 112:51505–10
    [Google Scholar]
  134. 134. 
    Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP et al. 2001. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194:11–12
    [Google Scholar]
  135. 135. 
    Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W et al. 2017. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:2315–26
    [Google Scholar]
  136. 136. 
    Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G et al. 2020. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38:2199–209
    [Google Scholar]
  137. 137. 
    O'Donnell TJ, Rubinsteyn A, Laserson U. 2020. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst 11:142–48.e7
    [Google Scholar]
  138. 138. 
    Manoury B. 2013. Proteases: essential actors in processing antigens and intracellular toll-like receptors. Front. Immunol. 4:299
    [Google Scholar]
  139. 139. 
    Barra C, Alvarez B, Paul S, Sette A, Peters B et al. 2018. Footprints of antigen processing boost MHC class II natural ligand predictions. Genome Med 10:84
    [Google Scholar]
  140. 140. 
    Ciudad MT, Sorvillo N, van Alphen FP, Catalán D, Meijer AB et al. 2017. Analysis of the HLA-DR peptidome from human dendritic cells reveals high affinity repertoires and nonconventional pathways of peptide generation. J. Leukoc. Biol. 101:115–27
    [Google Scholar]
  141. 141. 
    Abelin JG, Harjanto D, Malloy M, Suri P, Colson T et al. 2019. Defining HLA-II ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity 51:4766–79.e17
    [Google Scholar]
  142. 142. 
    Racle J, Michaux J, Rockinger GA, Arnaud M, Bobisse S et al. 2019. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37:111283–86
    [Google Scholar]
  143. 143. 
    Zhao W, Sher X. 2018. Systematically benchmarking peptide-MHC binding predictors: from synthetic to naturally processed epitopes. PLOS Comput. Biol. 14:11e1006457
    [Google Scholar]
  144. 144. 
    Paul S, Croft NP, Purcell AW, Tscharke DC, Sette A et al. 2020. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system. PLOS Comput. Biol. 16:5e1007757
    [Google Scholar]
  145. 145. 
    Bassani-Sternberg M, Gfeller D. 2016. Unsupervised HLA peptidome deconvolution improves ligand prediction accuracy and predicts cooperative effects in peptide-HLA interactions. J. Immunol. 197:62492–99
    [Google Scholar]
  146. 146. 
    Alvarez B, Reynisson B, Barra C, Buus S, Ternette N et al. 2019. NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved T-cell epitope predictions. Mol. Cell. Proteom. 18:122459–77
    [Google Scholar]
  147. 147. 
    Andreatta M, Lund O, Nielsen M. 2013. Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach. Bioinformatics 29:18–14
    [Google Scholar]
  148. 148. 
    Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:W1W449–54
    [Google Scholar]
  149. 149. 
    Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. 2017. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199:93360–68
    [Google Scholar]
  150. 150. 
    O'Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J. 2018. MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst 7:1129–32.e4
    [Google Scholar]
  151. 151. 
    Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H et al. 2017. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLOS Comput. Biol. 13:8e1005725
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101420-125021
Loading
/content/journals/10.1146/annurev-chembioeng-101420-125021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error