1932

Abstract

and spp. are best understood for their applications as probiotics, which are often transient, but as commensals it is probable that stable colonization in the gut is important for their beneficial roles. Recent research suggests that the establishment and persistence of strains of and in the gut are species- and strain-specific and affected by natural history, genomic adaptability, and metabolic interactions of the bacteria and the microbiome and immune aspects of the host but also regulated by diet. This provides new perspectives on the underlying molecular mechanisms. With an emphasis on host–microbe interaction, this review outlines how the characteristics of individual and bacteria, the host genotype and microbiome structure,diet, and host–microbe coadaptation during bacterial gut transition determine and influence the colonization process. The diet-tuned and personally tailored colonization can be achieved via a machine learning prediction model proposed here.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-061120-014739
2021-03-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-061120-014739.html?itemId=/content/journals/10.1146/annurev-food-061120-014739&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn T-H, Chai J, Pan C 2014. Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance. Bioinformatics 31:170–77
    [Google Scholar]
  2. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–80
    [Google Scholar]
  3. Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94
    [Google Scholar]
  4. Buck BL, Altermann E, Svingerud T, Klaenhammer TR 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71:8344–51
    [Google Scholar]
  5. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP et al. 2017. Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science 357:806–10
    [Google Scholar]
  6. Chen CH, Karvela M, Sohbati M, Shinawatra T, Toumazou C 2018. PERSON—personalized expert recommendation system for optimized nutrition. IEEE Trans. Biomed. Circuit Syst. 12:151–60
    [Google Scholar]
  7. Christensen HR, Frøkiær H, Pestka JJ 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168:171–78
    [Google Scholar]
  8. Christiaen SE, Motherway MOC, Bottacini F, Lanigan N, Casey PG et al. 2014. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLOS ONE 9:e98111
    [Google Scholar]
  9. Claes IJ, Segers ME, Verhoeven TL, Dusselier M, Sels BF et al. 2012. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb. Cell Fact. 11:161
    [Google Scholar]
  10. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. PNAS 104:7617–21
    [Google Scholar]
  11. Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK et al. 2019. Adaptive strategies of the candidate probiotic E. coli Nissle in the mammalian gut. Cell Host Microbe 25:499–512
    [Google Scholar]
  12. Da Silva S, Robbe-Masselot C, Raymond A, Mercade-Loubière M, Salvador-Cartier C et al. 2015. Spatial localization and binding of the probiotic Lactobacillus farciminis to the rat intestinal mucosa: influence of chronic stress. PLOS ONE 10:e0136048
    [Google Scholar]
  13. Davenport ER. 2020. Genetic variation shapes murine gut microbiota via immunity. Trends Immunol 41:1–3
    [Google Scholar]
  14. Denou E, Berger B, Barretto C, Panoff J-M, Arigoni F, Brüssow H 2007. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J. Bacteriol. 189:8109–19
    [Google Scholar]
  15. Denou E, Pridmore RD, Berger B, Panoff J-M, Arigoni F, Brüssow H 2008. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J. Bacteriol. 190:3161–68
    [Google Scholar]
  16. Dimarzio MJ. 2016. Hijacking host metabolism with Lactobacillus—understanding the implications of bile salt hydrolase diversity. PhD Thesis, Pa. State Univ., University Park
  17. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB et al. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800
    [Google Scholar]
  18. Donaldson GP, Lee SM, Mazmanian SK 2016. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14:20–32
    [Google Scholar]
  19. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. 2017. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. . Rev 41:S27–48
    [Google Scholar]
  20. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H et al. 2013. The long-term stability of the human gut microbiota. Science 341:1237439
    [Google Scholar]
  21. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J et al. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. PNAS 109:2108–13
    [Google Scholar]
  22. Forster H, Walsh MC, O'Donovan CB, Woolhead C, McGirr C et al. 2016. A dietary feedback system for the delivery of consistent personalized dietary advice in the web-based multicenter Food4Me study. J. Med. Internet Res. 18:e150
    [Google Scholar]
  23. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. 2011. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. . PLOS Genet 7:e1001314
    [Google Scholar]
  24. Frese SA, MacKenzie DA, Peterson DA, Schmaltz R, Fangman T et al. 2013. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLOS Genet 9:e1004057
    [Google Scholar]
  25. Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29:51189–232
    [Google Scholar]
  26. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–47
    [Google Scholar]
  27. Gallo RL, Hooper LV. 2012. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12:503–16
    [Google Scholar]
  28. Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R et al. 2018. Diacylglycerol kinase synthesized by commensal Lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol 11:380–93
    [Google Scholar]
  29. Geva-Zatorsky N, Alvarez D, Hudak JE, Reading NC, Erturk-Hasdemir D et al. 2015. In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med. 21:1091–103
    [Google Scholar]
  30. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG et al. 2017. Mining the human gut microbiota for immunomodulatory organisms. Cell 168:928–43
    [Google Scholar]
  31. Goh YJ, Klaenhammer TR. 2014. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microb. Cell Fact. 13:94
    [Google Scholar]
  32. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S 1992. Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37:121–28
    [Google Scholar]
  33. Grimm V, Radulovic K, Riedel CU 2015. Colonization of C57BL/6 mice by a potential probiotic Bifidobacterium bifidum strain under germ-free and specific pathogen-free conditions and during experimental colitis. PLOS ONE 10:e0139935
    [Google Scholar]
  34. Gueimonde M, Kalliomäki M, Isolauri E, Salminen S 2006. Probiotic intervention in neonates: Will permanent colonization ensue. ? J. Pediatr. Gastroenterol. Nutr. 42:604–6
    [Google Scholar]
  35. Ha J-H, Hauk P, Cho K, Eo Y, Ma X et al. 2018. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv. 4:eaar7063
    [Google Scholar]
  36. Harris HM, Bourin MJ, Claesson MJ, O'Toole PW 2017. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb. Genom. 3:e000115
    [Google Scholar]
  37. Hudak JE, Alvarez D, Skelly A, von Andrian UH, Kasper DL 2017. Illuminating vital surface molecules of symbionts in health and disease. Nat. Microbiol. 2:17099
    [Google Scholar]
  38. Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J et al. 2018. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 24:296–307.e7
    [Google Scholar]
  39. Joglekar P, Ding H, Canales-Herrerias P, Pasricha PJ, Sonnenburg JL, Peterson DA 2019. Intestinal IgA regulates expression of a fructan polysaccharide utilization locus in colonizing gut commensal Bacteroides thetaiotaomicron. . mBio 10:e02324–19
    [Google Scholar]
  40. Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA et al. 2015. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–25
    [Google Scholar]
  41. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. PNAS 106:17193–98
    [Google Scholar]
  42. Kearney SM, Gibbons SM, Erdman SE, Alm EJ 2018. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep 24:1842–51
    [Google Scholar]
  43. Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M et al. 2015. Bacteriocin production augments niche competition by enterococci in the mammalian GI tract. Nature 526:719–22
    [Google Scholar]
  44. Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E et al. 2016. Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell. Mol. Immunol. 13:251–62
    [Google Scholar]
  45. Krumbeck JA, Maldonado-Gomez MX, Martínez I, Frese SA, Burkey TE et al. 2015. In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications. Appl. Environ. Microbiol. 91:2455–65
    [Google Scholar]
  46. Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer‐Tait AE et al. 2016. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ. Microbiol. 18:2172–84
    [Google Scholar]
  47. Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K et al. 2018. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6:121
    [Google Scholar]
  48. Kurilshikov A, Wijmenga C, Fu J, Zhernakova A 2017. Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38:633–47
    [Google Scholar]
  49. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:426–29
    [Google Scholar]
  50. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E et al. 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13
    [Google Scholar]
  51. Licandro-Seraut H, Scornec H, Pédron T, Cavin J-F, Sansonetti PJ 2014. Functional genomics of Lactobacillus casei establishment in the gut. PNAS 111:E3101–9
    [Google Scholar]
  52. Lin PW, Myers LE, Ray L, Song S-C, Nasr TR et al. 2009. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med. 47:1205–11
    [Google Scholar]
  53. Maldonado-Gómez MX, Martínez I, Bottacini F, O'Callaghan A, Ventura M et al. 2016. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20:515–26
    [Google Scholar]
  54. Marco ML, Bongers RS, De Vos WM, Kleerebezem M 2007. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl. Environ. Microbiol. 73:124–32
    [Google Scholar]
  55. Marco ML, Peters TH, Bongers RS, Molenaar D, Van Hemert S et al. 2009. Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ. Microbiol. 11:2747–57
    [Google Scholar]
  56. Mathias A, Duc M, Favre L, Benyacoub J, Blum S, Corthésy B 2010. Potentiation of polarized intestinal Caco-2 cell responsiveness to probiotics complexed with secretory IgA. J. Biol. Chem. 285:33906–13
    [Google Scholar]
  57. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. 2014. Genome encyclopaedia of type strains of the genus Bifidobacterium. Appl. Environ. . Microbiol 80:6290–302
    [Google Scholar]
  58. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L et al. 2015. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 82:980–91
    [Google Scholar]
  59. Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M et al. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:2019–34
    [Google Scholar]
  60. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN et al. 2010. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4:377–87
    [Google Scholar]
  61. O'Toole PW, Marchesi JR, Hill C 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2:17057
    [Google Scholar]
  62. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–10
    [Google Scholar]
  63. Rattanaprasert M, Roos S, Hutkins RW, Walter J 2014. Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. J. Funct. Foods 10:85–94
    [Google Scholar]
  64. Rivière A, Selak M, Geirnaert A, Van den Abbeele P, De Vuyst L 2018. Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Appl. Environ. Microbiol. 84:e02893–17
    [Google Scholar]
  65. Ruiz PA, Hoffmann M, Szcesny S, Blaut M, Haller D 2005. Innate mechanisms for Bifidobacterium lactis to activate transient pro‐inflammatory host responses in intestinal epithelial cells after the colonization of germ‐free rats. Immunology 115:441–50
    [Google Scholar]
  66. Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR 2018. Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr. Opin. Biotechnol. 49:207–16
    [Google Scholar]
  67. Schultz M, Göttl C, Young RJ, Iwen P, Vanderhoof JA 2004. Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J. Pediatr. Gastroenterol. Nutr. 38:293–97
    [Google Scholar]
  68. Sequeira S, Kavanaugh D, MacKenzie DA, Šuligoj T, Walpole S et al. 2018. Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe–host interactions. PNAS 115:E2706–15
    [Google Scholar]
  69. Sheehan VM, Sleator RD, Hill C, Fitzgerald GF 2007. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153:3563–71
    [Google Scholar]
  70. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL 2018. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557:434–38
    [Google Scholar]
  71. Sims IM, Frese SA, Walter J, Loach D, Wilson M et al. 2011. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J 5:1115–24
    [Google Scholar]
  72. Smillie CS, Sauk J, Gevers D, Friedman J, Sung J et al. 2018. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23:229–40
    [Google Scholar]
  73. Song Y, He Q, Zhang J, Qiao J, Xu H et al. 2018. Genomic variations in probiotic Lactobacillus plantarum P-8 in the human and rat gut. Front. Microbiol. 9:893
    [Google Scholar]
  74. Sonnenburg JL, Chen CT, Gordon JI 2006. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol 4:2213–27
    [Google Scholar]
  75. Spor A, Koren O, Ley R 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9:279–90
    [Google Scholar]
  76. Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S et al. 2010. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLOS Pathog 6:e1000711
    [Google Scholar]
  77. Tailford LE, Crost EH, Kavanaugh D, Juge N 2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6:81
    [Google Scholar]
  78. Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D et al. 2016. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. PNAS 113:E8141–50
    [Google Scholar]
  79. Tang C, Kakuta S, Shimizu K, Kadoki M, Kamiya T et al. 2018. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat. Immunol. 19:755–65
    [Google Scholar]
  80. Tang W, Xing Z, Hu W, Li C, Wang J, Wang Y 2016. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl. Microbiol. Biotechnol. 100:7193–202
    [Google Scholar]
  81. Tannock GW, Ghazally S, Walter J, Loach D, Brooks H et al. 2005. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl. Environ. Microbiol. 71:8419–25
    [Google Scholar]
  82. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J, Gopal PK 2000. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66:2578–88
    [Google Scholar]
  83. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J et al. 2012. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 6:927–38
    [Google Scholar]
  84. Turroni F, Bottacini F, Foroni E, Mulder I, Kim J-H et al. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. PNAS 107:19514–19
    [Google Scholar]
  85. Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M et al. 2016. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME J 10:1656–68
    [Google Scholar]
  86. Turroni F, Serafini F, Foroni E, Duranti S, Motherway MOC et al. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions. PNAS 110:11151–56
    [Google Scholar]
  87. Van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM et al. 2009. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. PNAS 106:2371–76
    [Google Scholar]
  88. Van den Abbeele P, Marzorati M, Derde M, De Weirdt R, Joan V et al. 2016. Arabinoxylans, inulin and Lactobacillus reuteri 1063 repress the adherent-invasive Escherichia coli from mucus in a mucosa-comprising gut model. npj Biofilms Microbiomes 2:16016
    [Google Scholar]
  89. Walter J, Heng NC, Hammes WP, Loach DM, Tannock GW, Hertel C 2003. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69:2044–51
    [Google Scholar]
  90. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C et al. 2007. d‐Alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100‐23 results in impaired colonization of the mouse gastrointestinal tract. Environ. Microbiol. 9:1750–60
    [Google Scholar]
  91. Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW 2008. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80
    [Google Scholar]
  92. Wu G, Zhang C, Wu H, Wang R, Shen J et al. 2017. Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention. mBio 8:e02348–16
    [Google Scholar]
  93. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8
    [Google Scholar]
  94. Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W 2020. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin. Nutr. 39:51315–23
    [Google Scholar]
  95. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–85
    [Google Scholar]
  96. Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM et al. 2019. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25:656–67
    [Google Scholar]
  97. Zhou W, Chow K-H, Fleming E, Oh J 2019. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J 13:805–23
    [Google Scholar]
  98. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174:1388–405
    [Google Scholar]
/content/journals/10.1146/annurev-food-061120-014739
Loading
/content/journals/10.1146/annurev-food-061120-014739
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error